scholarly journals Quantum Transport in a Crystal with Short-Range Interactions: The Boltzmann–Grad Limit

2021 ◽  
Vol 184 (2) ◽  
Author(s):  
Jory Griffin ◽  
Jens Marklof

AbstractWe study the macroscopic transport properties of the quantum Lorentz gas in a crystal with short-range potentials, and show that in the Boltzmann–Grad limit the quantum dynamics converges to a random flight process which is not compatible with the linear Boltzmann equation. Our derivation relies on a hypothesis concerning the statistical distribution of lattice points in thin domains, which is closely related to the Berry–Tabor conjecture in quantum chaos.

2000 ◽  
Vol 84 (24) ◽  
pp. 5504-5507 ◽  
Author(s):  
Bodo Huckestein ◽  
Roland Ketzmerick ◽  
Caio H. Lewenkopf

2008 ◽  
Vol 22 (30) ◽  
pp. 5261-5277 ◽  
Author(s):  
JIAO WANG ◽  
ANTONIO M. GARCIA-GARCIA

We study generic effects on the quantum dynamics of classical trapping-leaking mechanism by investigating in detail the 2δ-kicked rotors whose classical phase space is partitioned into momentum cells separated by trapping regions which slow down the motion. We focus on a range of parameters where the dynamics is generic, namely, the phase space has no stable islands. As a consequence of the trapping-leaking mechanism, we show that the classical motion is described by a process of anomalous diffusion. We investigate in detail the impact of the underlying classical anomalous diffusion on the quantum dynamics with special emphasis on the phenomenon of dynamical localization. Based on the study of the quantum density of probability, its second moment and the return probability, we identify a region of weak dynamical localization where the quantum diffusion is still anomalous but the diffusion rate is slower than in the classical case. Moreover, we examine how other relevant time scales, such as the quantum-classical breaking time and the one related to the beginning of full dynamical localization, are modified by the classical anomalous diffusion. Finally, we discuss the relevance of our results for understanding the role of classical cantori in quantum mechanics.


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Guy Zisling ◽  
Lea Santos ◽  
Yevgeny Bar Lev

We numerically investigate the minimum number of interacting particles, which is required for the onset of strong chaos in quantum systems on a one-dimensional lattice with short-range and long-range interactions. We consider multiple system sizes which are at least three times larger than the number of particles and find that robust signatures of quantum chaos emerge for as few as 4 particles in the case of short-range interactions and as few as 3 particles for long-range interactions, and without any apparent dependence on the size of the system.


Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 286
Author(s):  
Thomas Dittrich

Quantum chaos is presented as a paradigm of information processing by dynamical systems at the bottom of the range of phase-space scales. Starting with a brief review of classical chaos as entropy flow from micro- to macro-scales, I argue that quantum chaos came as an indispensable rectification, removing inconsistencies related to entropy in classical chaos: bottom-up information currents require an inexhaustible entropy production and a diverging information density in phase-space, reminiscent of Gibbs’ paradox in statistical mechanics. It is shown how a mere discretization of the state space of classical models already entails phenomena similar to hallmarks of quantum chaos and how the unitary time evolution in a closed system directly implies the “quantum death” of classical chaos. As complementary evidence, I discuss quantum chaos under continuous measurement. Here, the two-way exchange of information with a macroscopic apparatus opens an inexhaustible source of entropy and lifts the limitations implied by unitary quantum dynamics in closed systems. The infiltration of fresh entropy restores permanent chaotic dynamics in observed quantum systems. Could other instances of stochasticity in quantum mechanics be interpreted in a similar guise? Where observed quantum systems generate randomness, could it result from an exchange of entropy with the macroscopic meter? This possibility is explored, presenting a model for spin measurement in a unitary setting and some preliminary analytical results based on it.


2020 ◽  
Vol 379 (2) ◽  
pp. 589-632
Author(s):  
Christopher Lutsko ◽  
Bálint Tóth

Abstract We prove the invariance principle for a random Lorentz-gas particle in 3 dimensions under the Boltzmann-Grad limit and simultaneous diffusive scaling. That is, for the trajectory of a point-like particle moving among infinite-mass, hard-core, spherical scatterers of radius r, placed according to a Poisson point process of density $$\varrho $$ ϱ , in the limit $$\varrho \rightarrow \infty $$ ϱ → ∞ , $$r\rightarrow 0$$ r → 0 , $$\varrho r^{2}\rightarrow 1$$ ϱ r 2 → 1 up to time scales of order $$T=o(r^{-2}\left| {\log r}\right| ^{-2})$$ T = o ( r - 2 log r - 2 ) . To our knowledge this represents the first significant progress towards solving rigorously this problem in classical nonequilibrium statistical physics, since the groundbreaking work of Gallavotti (Phys Rev 185:308–322, 1969, Nota Interna Univ di Roma 358, 1970, Statistical mechanics. A short treatise. Theoretical and mathematical physics series, Springer, Berlin, 1999), Spohn (Commun Math Phys 60:277–290, 1978, Rev Mod Phys 52:569–611, 1980) and Boldrighini–Bunimovich–Sinai (J Stat Phys 32:477–501, 1983). The novelty is that the diffusive scaling of particle trajectory and the kinetic (Boltzmann-Grad) limit are taken simultaneously. The main ingredients are a coupling of the mechanical trajectory with the Markovian random flight process, and probabilistic and geometric controls on the efficiency of this coupling. Similar results have been earlier obtained for the weak coupling limit of classical and quantum random Lorentz gas, by Komorowski–Ryzhik (Commun Math Phys 263:277–323, 2006), respectively, Erdős–Salmhofer–Yau (Acta Math 200:211–277, 2008, Commun Math Phys 271:1–53, 2007). However, the following are substantial differences between our work and these ones: (1) The physical setting is different: low density rather than weak coupling. (2) The method of approach is different: probabilistic coupling rather than analytic/perturbative. (3) Due to (2), the time scale of validity of our diffusive approximation—expressed in terms of the kinetic time scale—is much longer and fully explicit.


Sign in / Sign up

Export Citation Format

Share Document