Effect of alteration processes on the distribution of radionuclides in uraniferous sedimentary rocks and their environmental impact, southwestern Sinai, Egypt

2011 ◽  
Vol 289 (1) ◽  
pp. 173-184 ◽  
Author(s):  
Ibrahim E. El Aassy ◽  
Mohamed M. El Galy ◽  
Afaf A. Nada ◽  
Mohamed G. El Feky ◽  
Thanaa M. Abd El Maksoud ◽  
...  
Author(s):  
R. S. Attia ◽  
E. S. Abd El-Halim ◽  
Ibrahim E. El Aassy ◽  
A. El-Shershaby ◽  
H. A. Abdel Ghany

Clay Minerals ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 59-72 ◽  
Author(s):  
A. Grizelj ◽  
D. Tibljaš ◽  
M. Kovačić ◽  
D. Španić

AbstractMiocene pelitic sedimentary rocks from six wells in the Sava Depression (sub-basin in the south-western part of the Pannonian Basin System) were investigated in order to determine the degrees of diagenetic alteration.Qualitative and semiquantitative mineral compositions of samples and the content of smectite in illite-smectite (I-S) were determined by X-ray powder diffraction (XRD).Vitrinite reflectance and thermal alteration index (TAI) were measured in order to estimate the palaeotemperatures.Carbonate minerals, clay minerals and quartz are the main constituents of the pelitic sediments.Feldspars (albite), pyrite, opal-CT and hematite are present as minor constituents in some rocks. The mineral composition of the rocks, apart from previously known differences caused by various depositional environments and clastic material provenance, is dependent on the degree of diagenetic processes. At elevated temperatures and large burial depths the minerals formed by alteration processes or precipitated at the surface; smectite, kaolinite and calcite were gradually replaced by minerals formed by diagenetic processes, i.e. by illite-smectite, illite, chlorite, Ca-excess dolomite/ankerite and albite. Based on XRD data for smectite, I-S and illite, three stages of diagenetic development have been established. The early stage was characteristic of samples at depths <1.8 km containing smectite, I-S of the random R0 type and detrital illite.The middle stage begins with the appearance of the ordered R1 type of I-S at the depths >1.8 km and temperature above 80°C. At depths >4.6 km with corresponding temperatures >190ºC, the late stage began, characterized by the presence of R>1 I-S with <10% smectite.


Author(s):  
Thomas R. McKee ◽  
Peter R. Buseck

Sediments commonly contain organic material which appears as refractory carbonaceous material in metamorphosed sedimentary rocks. Grew and others have shown that relative carbon content, crystallite size, X-ray crystallinity and development of well-ordered graphite crystal structure of the carbonaceous material increases with increasing metamorphic grade. The graphitization process is irreversible and appears to be continous from the amorphous to the completely graphitized stage. The most dramatic chemical and crystallographic changes take place within the chlorite metamorphic zone.The detailed X-ray investigation of crystallite size and crystalline ordering is complex and can best be investigated by other means such as high resolution transmission electron microscopy (HRTEM). The natural graphitization series is similar to that for heat-treated commercial carbon blacks, which have been successfully studied by HRTEM (Ban and others).


1989 ◽  
Vol 4 ◽  
pp. 244-248 ◽  
Author(s):  
Donald L. Wolberg

The minerals pyrite and marcasite (broadly termed pyritic minerals) are iron sulfides that are common if not ubiquitous in sedimentary rocks, especially in association with organic materials (Berner, 1970). In most marine sedimentary associations, pyrite and marcasite are associated with organic sediments rich in dissolved sulfate and iron minerals. Because of the rapid consumption of sulfate in freshwater environments, however, pyrite formation is more restricted in nonmarine sediments (Berner, 1983). The origin of the sulfur in nonmarine environments must lie within pre-existing rocks or volcanic detritus; a relatively small, but significant contribution may derive from plant and animal decomposition products.


Sign in / Sign up

Export Citation Format

Share Document