Evaluation of groundwater recharge sources based on environmental tracers in an arid alluvial fan, NW China

2018 ◽  
Vol 319 (1) ◽  
pp. 123-133 ◽  
Author(s):  
Wei Xu ◽  
Pucheng Zhu ◽  
Fengtian Yang
Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 278 ◽  
Author(s):  
Takeo Tsuchihara ◽  
Katsushi Shirahata ◽  
Satoshi Ishida ◽  
Shuhei Yoshimoto

Paddy rice fields on an alluvial fan not only use groundwater for irrigation but also play an important role as groundwater recharge sources. In this study, we investigated the spatial distribution of isotopic and hydrochemical compositions of groundwater in the Nasunogahara alluvial fan in Japan and applied a self-organizing map (SOM) to characterize the groundwater. The SOM assisted with the hydrochemical and isotopic interpretation of the groundwater in the fan, and clearly classified the groundwater into four groups reflecting the different origins. Two groundwater groups with lower isotopic ratios of water than the mean precipitation values in the fan were influenced by the infiltration of river water flowing from higher areas in the catchments and were differentiated from each other by their Na+ and Cl− concentrations. A groundwater group with higher isotopic ratios was influenced by the infiltration of paddy irrigation water that had experienced evaporative isotopic enrichment. Groundwater in the fourth group, which was distributed in the upstream area of the fan where dairy farms dominated, showed little influence of recharge waters from paddy rice fields. The findings of this study will contribute to proper management of the groundwater resources in the fan.


2020 ◽  
Vol 34 (16) ◽  
pp. 3539-3554
Author(s):  
Yumi Yoshioka ◽  
Kimihito Nakamura ◽  
Hiroshi Takimoto ◽  
Shinji Sakurai ◽  
Takao Nakagiri ◽  
...  

2016 ◽  
Vol 48 (4) ◽  
pp. 1071-1087 ◽  
Author(s):  
Takashi Nakamura ◽  
Kei Nishida ◽  
Futaba Kazama

This study investigates the contribution ratios of different groundwater recharge sources and influence of a dual monsoon system in Kofu basin, central Japan, through the hydrogen and oxygen isotopic analysis of precipitation, river water, and groundwater. The study is focused on the area of the Kamanashigawa and Midaigawa alluvial fans, which are formed by two main rivers. Precipitation isotopic content exhibits significant seasonal variability. Also, river water presents d-excess values higher than annual precipitation at plain areas (9 and 10‰), suggesting that two different air-masses contribute to precipitation, corresponding to the monsoon and pre-monsoon periods. The results of this study allow estimation of relative contributions of different sources to groundwater and influence of a dual monsoon system. The mass-balance analysis of the δ18O to identify the groundwater source indicates the river water contributes 38–100% of the recharge, while precipitation contributes 29–62% in Kamanashigawa alluvial fan. In the case of Midaigawa alluvial fan, river water contributes 77–99% in the northern part; in the southern side, 30–93% of contribution comes from precipitation. The mass-balance analysis of the d-excess indicates pre-monsoon precipitation contributes 46–68% and 39–65% to groundwater of the Kamanashigawa and Midaigawa alluvial fans, respectively.


2021 ◽  
Author(s):  
Uwe Morgenstern ◽  
Zara Rawlinson

<p>Geologic data to provide information on the functioning of aquifers is often scars. For the aquifers underlying the Heretaunga Plains, Hawkes Bay, one of New Zealand’s most important groundwater systems, we used groundwater age (tritium, SF6, 14C) to inform the geologic model and to provide information on groundwater flow through alternating strata of permeable river gravel beds and fine impermeable beds that form an interconnected unconfined–confined aquifer system with complex groundwater flow processes.</p><p>The aquifers are a result of geological processes responding to climate change cycles from cold glacial when sea level was more than 100m below present sea level, to warm interglacial periods with sea level similar to present day. Glacial climate strata are river gravel, sand and silt deposits and include the artesian aquifers. The interglacial strata form the aquicludes and are marine sand, silt, and clay deposits with interbedded estuarine, swamp and coastal fluvial silt, clay, peat and gravel deposits.</p><p>We have re-visited tracer data sampled during the drilling of multi-level observation well in the early 1990s, and collected new samples from these multi-level bores in order to understand in 3D the groundwater recharge sources, groundwater recharge and flow rates, connection to the rivers, and potential groundwater discharge out to sea. Consistently young water (c. 25 years) at depth greater than 100m indicates preferential flow paths, likely related to paleo-river channels. The flow pattern obtained from the water tracer data improves the geologic information from the drill-holes, and fits with information from recent airborne transient electromagnetic (SkyTEM) geophysical surveys.</p>


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1667 ◽  
Author(s):  
Nuan Yang ◽  
Guangcai Wang ◽  
Zheming Shi ◽  
Dan Zhao ◽  
Wanjun Jiang ◽  
...  

Groundwater is a critical water resource for human survival and economic development in arid and semi-arid areas. It is crucial to understand the groundwater circulation and hydrochemical evolution for sustainable management and utilization of groundwater resources in those areas. To this end, an investigation of the hydrochemical characteristics of surface water and groundwater was conducted in Nomhon, an arid area located in the Qaidam Basin, northwest China, by using hydrochemical (major and trace elements) and stable isotopes (δD and δ18O) approaches. Stable isotopes and ion ratios were analyzed to determine the recharge sources, hydrochemistry characteristics, and major hydrogeochemical processes. Meanwhile, inverse geochemistry modeling was applied to quantitatively determine the mass transfer of hydrogeochemical processes. The results showed that groundwater in the study area is mainly recharged by atmospheric precipitation in mountainous areas, and the groundwater in the center of basin might originate from ancient water in cold and humid environments. Along the groundwater flow path, the TDS of groundwater increased gradually from fresh to salty (ranging from 462.50 to 19,604.40 mg/L), and the hydrochemical type changed from Cl·HCO3–Na·Mg·Ca to Cl–Na. Groundwater chemical composition and mass balance modeling results indicated that from alluvial fan to lacustrine plain, the main hydrogeochemical processes changed from the dissolution of halite and albite and the precipitation of dolomite and kaolinite to the dissolution of halite and gypsum, precipitation of calcite, redox (SO42− reduction), and cation exchange. This study would be helpful for water resources management in this area and other similar areas.


The Holocene ◽  
2008 ◽  
Vol 18 (7) ◽  
pp. 1045-1054 ◽  
Author(s):  
John B. Gates ◽  
W. Mike Edmunds ◽  
Jinzhu Ma ◽  
Paul R. Sheppard

2020 ◽  
Vol 24 (1) ◽  
pp. 249-267 ◽  
Author(s):  
Cornelia Wilske ◽  
Axel Suckow ◽  
Ulf Mallast ◽  
Christiane Meier ◽  
Silke Merchel ◽  
...  

Abstract. Despite being the main drinking water resource for over 5 million people, the water balance of the Eastern Mountain Aquifer system on the western side of the Dead Sea is poorly understood. The regional aquifer consists of fractured and karstified limestone – aquifers of Cretaceous age, and it can be separated into a Cenomanian aquifer (upper aquifer) and Albian aquifer (lower aquifer). Both aquifers are exposed along the mountain ridge around Jerusalem, which is the main recharge area. From here, the recharged groundwater flows in a highly karstified aquifer system towards the east and discharges in springs in the lower Jordan Valley and Dead Sea region. We investigated the Eastern Mountain Aquifer system for groundwater flow, groundwater age and potential mixtures, and groundwater recharge. We combined 36Cl ∕ Cl, tritium, and the anthropogenic gases SF6, CFC-12 (chlorofluorocarbon) and CFC-11, while using CFC-113 as “dating” tracers to estimate the young water components inside the Eastern Mountain Aquifer system. By application of lumped parameter models, we verified young groundwater components from the last 10 to 30 years and an admixture of a groundwater component older than about 70 years. Concentrations of nitrate, simazine (pesticide), acesulfame K (ACE-K; artificial sweetener) and naproxen (NAP; drug) in the groundwater were further indications of infiltration during the last 30 years. The combination of multiple environmental tracers and lumped parameter modelling helped to understand the groundwater age distribution and to estimate recharge despite scarce data in this very complex hydrogeological setting. Our groundwater recharge rates support groundwater management of this politically difficult area and can be used to inform and calibrate ongoing groundwater flow models.


Sign in / Sign up

Export Citation Format

Share Document