In situ silica reinforcement of natural rubber by sol–gel process via rubber solution

2009 ◽  
Vol 52 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Benjawan Chaichua ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub
2011 ◽  
Vol 58 (2) ◽  
pp. 407-418 ◽  
Author(s):  
Natchamon Watcharakul ◽  
Sirilux Poompradub ◽  
Pattarapan Prasassarakich

RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58816-58825 ◽  
Author(s):  
Bharat P. Kapgate ◽  
Chayan Das

The strong CR/in situ silica interaction causes filler accumulation at the interphase and enhances the compatibility and reinforcement in the NR/CR blend.


2001 ◽  
Vol 74 (1) ◽  
pp. 16-27 ◽  
Author(s):  
S. Kohjiya ◽  
K. Murakami ◽  
S. Iio ◽  
T. Tanahashi ◽  
Y. Ikeda

Abstract The sol—gel reaction of tetraethoxysilane produced the fine and well-dispersed in situ silica particles in the “green” natural rubber (NR) matrix before curing. This new method was developed for a NR/silica composite material, and a good reinforcement effect of in situ silica was observed on the NR vulcanizate. The method is expected to be an industrially practical technique. The in situ silica did not much inhibit the accelerated sulfur curing. Thus, it is estimated that the concentration of silanol groups on the in situ silica surface was smaller than those on the conventional silica surface. The silica—silica interaction of in situ silica seems to be weaker to result in better dispersion in the rubber matrix compared with the conventional silica. Atomic force microscopy suggested that the wettability of NR onto in situ silica was higher than that onto conventional silica. The hardness, modulus at 50% elongation and the storage modulus at room temperature of in situ silica-filled NR vulcanizate were smaller than those of conventional silica-filled NR vulcanizate, although the crosslinking density of the former was larger than that of the latter and their silica contents were comparable. These unique characteristics of in situ silica-filled vulcanizate seem to be ascribed to the fine and well-dispersed in situ silica particles in the NR matrix. These observations suggest that NR (a renewable resource)/in situ silica composite has much potential as an ecologically “green” material in the rubber industry.


2010 ◽  
Vol 93-94 ◽  
pp. 525-528 ◽  
Author(s):  
Torpong Sittiphan ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub

In situ silica filling of styrene grafted natural rubber (ST-g-NR) was carried out by using sol-gel reaction of tetraethoxysilane (TEOS). The effects of concentration of catalyst and reaction temperature on the in situ silica content were investigated. ST-g-NR was synthesized via an emulsion polymerization using cumene hydroperoxide (CHPO) and tetraethylene pentamine (TEPA) as initiators. The synthesized ST-g-NR was characterized by a Fourier Transform Infrared Spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR). The content of in situ silica generated in ST-g-NR matrix was determined by Thermogravimetry Analysis (TGA). In situ silica up to 50 parts per hundred rubbers by weight (phr) was successfully filled in the ST-g-NR matrix. The silica content increased with the increase of n-hexylamine concentration. However, the effect of reaction temperature was insignificant to silica content.


2014 ◽  
Vol 181 ◽  
pp. 39-45 ◽  
Author(s):  
Torpong Sittiphan ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3338
Author(s):  
Nasrullah Mat Rozi ◽  
Hamidah Abdul Hamid ◽  
Md. Sohrab Hossain ◽  
Nor Afifah Khalil ◽  
Ahmad Naim Ahmad Yahaya ◽  
...  

A multi-objective optimization of in situ sol-gel process was conducted in preparing oil palm fiber-reinforced polypropylene (OPF-PP) composite for an enhancement of mechanical and thermal properties. Tetraethyl orthosilicate (TEOS) and butylamine were used as precursors and catalysts for the sol-gel process. The face-centered central composite design (FCCD) experiments coupled with response surface methodology (RSM) has been utilized to optimize in situ silica sol-gel process. The optimization process showed that the drying time after the in-situ silica sol-gel process was the most influential factor on silica content, while the molar ratio of TEOS to water gave the most significant effect on silica residue. The maximum silica content of 34.1% and the silica residue of 35.9% were achieved under optimum conditions of 21.3 h soaking time, 50 min drying time, pH value of 9.26, and 1:4 molar ratio of TEOS to water. The untreated oil palm fiber (OPF) and silica sol-gel modified OPF (SiO2-OPF) were used as the reinforcing fibers, with PP as a matrix and maleic anhydride grafted polypropylene (MAgPP) as a compatibilizer for the fiber-reinforced PP matrix (SiO2-OPF-PP-MAgPP) composites preparation. The mechanical and thermal properties of OPF-PP, SiO2-OPF-PP, SiO2-OPF-PP-MAgPP composites, and pure PP were determined. It was found that the OPF-S-PP-MAgPP composite had the highest toughness and stiffness with values of tensile strength, Young’s modulus, and elongation at break of 30.9 MPa, 881.8 MPa, and 15.1%, respectively. The thermal properties analyses revealed that the OPF-S-PP-MAgPP exhibited the highest thermally stable inflection point at 477 °C as compared to pure PP and other composites formulations. The finding of the present study showed that the SiO2-OPF had the potential to use as a reinforcing agent to enhance the thermal-mechanical properties of the composites.


1998 ◽  
Vol 519 ◽  
Author(s):  
Y. Yan ◽  
Z. Duan ◽  
D.-G. Chen ◽  
S. Ray Chaudhuri

AbstractThe insoluble, strongly hydrogen bonded organic pigment of 3,6-bis-(4-chlorphenyl)-l,4- diketopyrrolo [3,4-c] pyrrole was transiently blocked by adding carbamate groups, and consequently incorporated into organic-inorganic hybrid matrices by a sol-gel process. The homo- (pigment-pigment) and hetero-intermolecular (pigment-matrix) interactions were found to control both the assembly and dispersion of pigment molecules in the hybrid coating films. A weaker interaction between matrices and pigment molecules results in aggregation of the carbamate pigment in the methyl-silicate films. A stronger interaction forms a homogenous dispersion and coloration of the phenyl-silicate films. The as-prepared methyl- and phenylsilicate films doped with the organic pigment were distinguished by a morphology change and a blue (hypsochromic) shift in absorption from 550 to 460 nm. Thermal treatment can remove the carbamate groups and in-situ form the organic pigment in the hybrid films.


Sign in / Sign up

Export Citation Format

Share Document