Styrene grafted natural rubber reinforced by in situ silica generated via sol–gel technique

2014 ◽  
Vol 181 ◽  
pp. 39-45 ◽  
Author(s):  
Torpong Sittiphan ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub
RSC Advances ◽  
2014 ◽  
Vol 4 (102) ◽  
pp. 58816-58825 ◽  
Author(s):  
Bharat P. Kapgate ◽  
Chayan Das

The strong CR/in situ silica interaction causes filler accumulation at the interphase and enhances the compatibility and reinforcement in the NR/CR blend.


Polymer ◽  
2005 ◽  
Vol 46 (10) ◽  
pp. 3343-3354 ◽  
Author(s):  
Rajatendu Sengupta ◽  
Abhijit Bandyopadhyay ◽  
Sunil Sabharwal ◽  
Tapan K. Chaki ◽  
Anil K. Bhowmick

2009 ◽  
Vol 52 (2) ◽  
pp. 219-227 ◽  
Author(s):  
Benjawan Chaichua ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub

2011 ◽  
Vol 58 (2) ◽  
pp. 407-418 ◽  
Author(s):  
Natchamon Watcharakul ◽  
Sirilux Poompradub ◽  
Pattarapan Prasassarakich

2004 ◽  
Vol 77 (5) ◽  
pp. 830-846 ◽  
Author(s):  
Abhijit Bandyopadhyay ◽  
Mousumi De Sarkar ◽  
Anil K. Bhowmick

Abstract Epoxidized natural rubber (ENR) / silica organic-inorganic hybrid nanocomposites were prepared by using a sol-gel technique. Tetraethoxysilane was used as the precursor for the in-situ generation of silica. The choice of ENR as a matrix was made because of its polar nature which can interact with the in-situ generated silica. The sol-gel reaction was carried out at room temperature by dissolving the rubber in tetrahydrofuran solvent using hydrochloric acid as the catalyst. The resultant composite films appeared transparent up to 50 wt% of tetraethoxysilane loading. Dispersion of the discrete silica particles having dimensions of 15 – 100 nm was observed through transmission electron microscope. Scanning electron microscopic studies did not produce any evidence for formation of silica network within the bulk of the composite. Infrared spectroscopic studies indicated the occurrence of chemical interaction within the rubber /silica organic-inorganic interfaces which was further supported by the insolubility of the respective samples in tetrahydrofuran under the ambient conditions. Mechanical reinforcement within the hybrid nanocomposites, both at high and low temperature regions, was demonstrated through dynamic mechanical analysis. The composites exhibited superior tensile strength and tensile moduli compared to the gum rubber samples. Further reinforcement was noticed when the rubber phase in the nanocomposites was cured with either benzoyl peroxide or dicumyl peroxide. The dicumyl peroxide cured hybrid composites displayed 112% improvement in tensile strength over the control crosslinked rubber sample, probably due to synergisms of nanosilica reinforcement and crosslinking of the rubber phase in the hybrids.


2001 ◽  
Vol 74 (1) ◽  
pp. 16-27 ◽  
Author(s):  
S. Kohjiya ◽  
K. Murakami ◽  
S. Iio ◽  
T. Tanahashi ◽  
Y. Ikeda

Abstract The sol—gel reaction of tetraethoxysilane produced the fine and well-dispersed in situ silica particles in the “green” natural rubber (NR) matrix before curing. This new method was developed for a NR/silica composite material, and a good reinforcement effect of in situ silica was observed on the NR vulcanizate. The method is expected to be an industrially practical technique. The in situ silica did not much inhibit the accelerated sulfur curing. Thus, it is estimated that the concentration of silanol groups on the in situ silica surface was smaller than those on the conventional silica surface. The silica—silica interaction of in situ silica seems to be weaker to result in better dispersion in the rubber matrix compared with the conventional silica. Atomic force microscopy suggested that the wettability of NR onto in situ silica was higher than that onto conventional silica. The hardness, modulus at 50% elongation and the storage modulus at room temperature of in situ silica-filled NR vulcanizate were smaller than those of conventional silica-filled NR vulcanizate, although the crosslinking density of the former was larger than that of the latter and their silica contents were comparable. These unique characteristics of in situ silica-filled vulcanizate seem to be ascribed to the fine and well-dispersed in situ silica particles in the NR matrix. These observations suggest that NR (a renewable resource)/in situ silica composite has much potential as an ecologically “green” material in the rubber industry.


2010 ◽  
Vol 93-94 ◽  
pp. 525-528 ◽  
Author(s):  
Torpong Sittiphan ◽  
Pattarapan Prasassarakich ◽  
Sirilux Poompradub

In situ silica filling of styrene grafted natural rubber (ST-g-NR) was carried out by using sol-gel reaction of tetraethoxysilane (TEOS). The effects of concentration of catalyst and reaction temperature on the in situ silica content were investigated. ST-g-NR was synthesized via an emulsion polymerization using cumene hydroperoxide (CHPO) and tetraethylene pentamine (TEPA) as initiators. The synthesized ST-g-NR was characterized by a Fourier Transform Infrared Spectroscopy (FTIR) and Proton Nuclear Magnetic Resonance Spectroscopy (1H NMR). The content of in situ silica generated in ST-g-NR matrix was determined by Thermogravimetry Analysis (TGA). In situ silica up to 50 parts per hundred rubbers by weight (phr) was successfully filled in the ST-g-NR matrix. The silica content increased with the increase of n-hexylamine concentration. However, the effect of reaction temperature was insignificant to silica content.


Sign in / Sign up

Export Citation Format

Share Document