Mobile amorphous, rigid amorphous and crystalline fractions in isotactic polypropylene during fast cooling

2016 ◽  
Vol 127 (1) ◽  
pp. 931-937 ◽  
Author(s):  
Jürgen E. K. Schawe
2008 ◽  
Vol 41 (21) ◽  
pp. 8095-8102 ◽  
Author(s):  
Qamer Zia ◽  
Daniela Mileva ◽  
René Androsch

2021 ◽  
Author(s):  
Enrico Carmeli ◽  
Gottfried Kandioller ◽  
Markus Gahleitner ◽  
Alejandro J. Müller ◽  
Davide Tranchida ◽  
...  

2015 ◽  
Vol 112 (3) ◽  
pp. 305 ◽  
Author(s):  
Lian-yun Jiang ◽  
Guo Yuan ◽  
Jian-hui Shi ◽  
Yue Xue ◽  
Di Wu ◽  
...  

2019 ◽  
Author(s):  
Ajay Gautam ◽  
Marcel Sadowski ◽  
Nils Prinz ◽  
Henrik Eickhoff ◽  
Nicolo Minafra ◽  
...  

<p>Lithium argyrodite superionic conductors are currently being investigated as solid electrolytes for all-solid-state batteries. Recently, in the lithium argyrodite Li<sub>6</sub>PS<sub>5</sub>X (X = Cl, Br, I), a site-disorder between the anionsS<sup>2–</sup>and X<sup>–</sup>has been observed, which strongly affects the ionic transport and appears to be a function of the halide present. In this work, we show how such disorder in Li<sub>6</sub>PS<sub>5</sub>Br can be engineered <i>via</i>the synthesis method. By comparing fast cooling (<i>i.e. </i>quenching) to more slowly cooled samples, we find that anion site-disorder is higher at elevated temperatures, and that fast cooling can be used to kinetically trap the desired disorder, leading to higher ionic conductivities as shown by impedance spectroscopy in combination with <i>ab-initio</i>molecular dynamics. Furthermore, we observe that after milling, a crystalline lithium argyrodite can be obtained within one minute of heat treatment. This rapid crystallization highlights the reactive nature of mechanical milling and shows that long reaction times with high energy consumption are not needed in this class of materials. The fact that site-disorder induced <i>via</i>quenching is beneficial for ionic transport provides an additional approach for the optimization and design of lithium superionic conductors.</p>


2020 ◽  
pp. 59-64
Author(s):  
N. I. Kurbanova ◽  
◽  
T. M. Gulieva ◽  
N. Ya. Ischenko ◽  
◽  
...  

The effect of additives of nanofillers (NF) containing nanoparticles (NP) of copper oxide, stabilized by a polymer matrix of maleized polyethylene (MPE), obtained by the mechanochemical method, on the properties of composites based on isotactic polypropylene (PP) and high-pressure polyethylene (PE) was studied by X-ray phase (XRD) and thermogravimetric (TGA) analyzes. The enhancement of strength, deformation, and rheological parameters, as well as the thermo-oxidative stability of the obtained nanocomposites was revealed, which, apparently, is due to the synergistic effect of the interaction of copper-containing nanoparticles with anhydride groups of MPE. It is shown that nanocomposites based on PP/PE/NF can be processed both by pressing and injection molding and extrusion, which expands the scope of its application.


Alloy Digest ◽  
1989 ◽  
Vol 38 (10) ◽  

Abstract ISOPLAST 101, unreinforced, is a rigid, amorphous polyurethane thermoplastic polymer. It is opaque and impact modified. It is injection moldable and extrudable. It is characterized by its high impact strength, high abrasion resistance, excellent chemical and solvent resistance and low moisture sensitivity. This datasheet provides information on composition, physical properties, and tensile properties as well as fracture toughness. It also includes information on wear resistance. Filing Code: P-10. Producer or source: The Dow Chemical Company.


1989 ◽  
Vol 54 (5) ◽  
pp. 1269-1275
Author(s):  
Miloslav Kučera ◽  
Dušan Kimmer ◽  
Karla Majerová ◽  
Zdeněk Fiala

For an effective modification of polyalkenes leading to the formation of block and/or graft copolymers, the presence of co-initiating water is absolutely necessary. We have compared two procedures used in the co-initiation of cationic reactions on polymers. Gradually supplied air moisture raises the efficiency of modification of isotactic polypropylene with poly(oxyethylene) several times, compared with a single addition of co-initiating water.


1996 ◽  
Vol 61 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Bhupendra N. Misra ◽  
G. S. Chauhan ◽  
Inderjeet Kaur

Radiation-induced graft copolymerization of vinyl acetate (VAC) and isopropenyl acetate (PAC) onto isotactic polypropylene (IPP) has been studied. The percentage of grafting was calculated for various reaction parameters, and the optimum conditions for attaining the maximum percentage of grafting were determined. Maximal achieved extents of grafting are 39% and 29% for VAC and PAC, respectively. The reactivity of the two monomers with respect to grafting is discussed.


Sign in / Sign up

Export Citation Format

Share Document