Thermal-hydraulic investigation on micro heat sinks with ribbed pin-fin arrays and single heating input: parametrical study

Author(s):  
Ziqiang He ◽  
Yunfei Yan ◽  
Li Zhang
1993 ◽  
Vol 13 (Supplement1) ◽  
pp. 195-198
Author(s):  
K. MINAKAMI ◽  
S. MOCHIZUKI ◽  
A. MURATA ◽  
Y. YAGI ◽  
H. IWASAKI

Author(s):  
Yin Lam ◽  
Nicole Okamoto ◽  
Younes Shabany ◽  
Sang-Joon John Lee

Heat removal is an increasing engineering challenge for higher-density packaging of circuit components. Microchannel heat sinks with liquid cooling have been investigated to take advantage of high surface-to-volume ratio and higher heat capacity of liquids relative to gases. This study experimentally investigated heat removal by liquid cooling through shallow copperclad cavities with staggered pin-fin arrays. Cavities with pin-fins were fabricated by chemical etching of a copperclad layer (nominally 105 μm thick) on a printed-circuit substrate (FR-4). The overall etched cavity was 30 mm wide, 40 mm long, and 0.1 mm deep. The pins were 1.1 mm in diameter and were distributed in a staggered arrangement. The cavity was sealed with a second copperclad substrate using an elastomer gasket. This assembly was then connected to a syringe pump delivery system. Deionized water was used as the working fluid, with volumetric flow rate up to 1.5 mL/min. The heat sink was subjected to a uniform heat flux of 5 W on the underside. Performance of the heat sink was evaluated in terms of pressure drop and the convection thermal resistance. Pressure drop across the heat sinks was less than 10 kPa, dominated by wall surface area rather than the small surface area contributed by cylindrical pins. At low flow rate, caloric thermal resistance dominated the overall thermal resistance of the heat sink. When compared to a microchannel without pins, the pin-fin microchannel reduced convective thermal resistance of the heat sink by approximately a factor of 4.


Author(s):  
Zhuo Cui

This paper presents the effects of heat dissipation performance of pin fins with different heat sink structures. The heat dissipation performance of two types of pin fin arrays heat sink are compared through measuring their heat resistance and the average Nusselt number in different cooling water flow. The temperature of cpu chip is monitored to determine the temperature is in the normal range of working temperature. The cooling water flow is in the range of 0.02L/s to 0.15L/s. It’s found that the increase of pin fins in the corner region effectively reduce the temperature of heat sink and cpu chip. The new type of pin fin arrays increase convection heat transfer coefficient and reduce heat resistance of heat sink.


Sign in / Sign up

Export Citation Format

Share Document