Analytical model for ultrashort pulse laser heating in a titanium nanofilm by implementing dual-phase-lag theory in mathematical analysis

Author(s):  
Jaideep Dutta ◽  
Balaram Kundu ◽  
Ranjib Biswas
2013 ◽  
Vol 52 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Haw-Long Lee ◽  
Wen-Lih Chen ◽  
Win-Jin Chang ◽  
Eing-Jer Wei ◽  
Yu-Ching Yang

2013 ◽  
Vol 13 (10) ◽  
pp. 7205-7207 ◽  
Author(s):  
Ching-Yen Ho ◽  
Yu-Hsiang Tsai ◽  
Bor-Chyuan Chen

Author(s):  
Swarup Bag ◽  
M. Ruhul Amin

Abstract When the femtosecond laser pulse is comparable to the electron relaxation time, the hyperbolic effect cannot be neglected in heat transfer analysis. The non-Fourier effect is considered for heat transfer analysis assuming finite delay in the development of temperature within the body. This delay is represented in terms of two relaxation times connected to heat flux and temperature gradient. In the present work, a 3D finite element-based heat transfer model is developed using a dual-phase-lag effect. Since the experimental basis of transient temperature distribution in ultrashort pulse laser is extremely difficult or nearly impossible, the model results have been validated with the literature reported results. Furthermore, the simulation of dissimilar fusion welding system treated by an ultrashort pulse laser is demonstrated. The typical characteristic of thermal behavior with the application of femtosecond fiber laser on welding of dissimilar aluminum alloy and stainless steel is presented. The model results in the form of computed isotherm are compared with the literature reported weld pool geometry for dissimilar materials. The feasibility of characteristic parameters like pulse frequency, pulse width, and relaxation times are assessed in this study. A clear guideline of the geometric shape and size of weld pool geometry and the peak temperature of the welding system corresponding to predictable laser parameters is the effective output from this study. Peak temperature reached in a very short interval of time (∼ nanosecond) is analogous to a high rate of heating or cooling that affects the microstructural changes, specifically the formation of intermetallic for dissimilar welding.


Author(s):  
Swarup Bag ◽  
M. Ruhul Amin

In the present work, the deformation behavior in metallic film subjected to ultra-short laser heating is investigated. Static thermo-elastic behavior is predicted for 100 nm thin film of either single layer or multiple layers. The temperature distribution is estimated from dual-phase lag non-Fourier heat conduction model. The maximum temperature after single pulse is achieved 730 K. The temperature profile for this pulse laser is used to compute elastic stress and distortion field following the minimization of potential energy of the system. In the present work, the simulation has been proposed by developing 3D finite element based coupled thermo-elastic model using dual phase lag effect. The experimental basis of transient temperature distribution in ultra-short pulse laser is extremely difficult or nearly impossible, the model results have been validated with literature reported thermal results. Since the temperature distribution due to pulse laser source varies with time, the stress analysis is performed in incremental mode. Hence, a sequentially coupled thermo-mechanical model is developed that is synchronized between thermal and mechanical analysis in each time steps of transient problem. The maximum equivalent stress is achieved 0.3 GPa. Numerical results show that the predicted thermal stress may exceeds the tensile strength of the material and may lead to crack or damage the thin film.


Sign in / Sign up

Export Citation Format

Share Document