Thermal Stress Associated With Non-Fourier Heat Conduction in Femtosecond Laser Heating of Multilayer Metallic Films

Author(s):  
Swarup Bag ◽  
M. Ruhul Amin

In the present work, the deformation behavior in metallic film subjected to ultra-short laser heating is investigated. Static thermo-elastic behavior is predicted for 100 nm thin film of either single layer or multiple layers. The temperature distribution is estimated from dual-phase lag non-Fourier heat conduction model. The maximum temperature after single pulse is achieved 730 K. The temperature profile for this pulse laser is used to compute elastic stress and distortion field following the minimization of potential energy of the system. In the present work, the simulation has been proposed by developing 3D finite element based coupled thermo-elastic model using dual phase lag effect. The experimental basis of transient temperature distribution in ultra-short pulse laser is extremely difficult or nearly impossible, the model results have been validated with literature reported thermal results. Since the temperature distribution due to pulse laser source varies with time, the stress analysis is performed in incremental mode. Hence, a sequentially coupled thermo-mechanical model is developed that is synchronized between thermal and mechanical analysis in each time steps of transient problem. The maximum equivalent stress is achieved 0.3 GPa. Numerical results show that the predicted thermal stress may exceeds the tensile strength of the material and may lead to crack or damage the thin film.

2013 ◽  
Vol 52 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Haw-Long Lee ◽  
Wen-Lih Chen ◽  
Win-Jin Chang ◽  
Eing-Jer Wei ◽  
Yu-Ching Yang

Volume 4 ◽  
2004 ◽  
Author(s):  
Illayathambi Kunadian ◽  
J. M. McDonough ◽  
K. A. Tagavi

In the present work we investigate femtosecond laser heating of nanoscale metal films irradiated by a pulsating laser in three dimensions using the Dual Phase Lag (DPL) model and consider laser heating at different locations on the metal film. A numerical solution based on an explicit finite-difference method has been employed to solve the DPL heat conduction equation. The stability criterion for selecting a time step size is obtained using von Neumann eigenmode analysis, and grid function convergence tests have been performed. The energy absorption rate, which is used to model femtosecond laser heating, has been modified to accommodate for the three-dimensional laser heating. We compare our results with classical diffusion and hyperbolic heat conduction models and demonstrate significant differences among these three approaches. The present research enables us to study ultrafast laser heating mechanisms of nano-films in 3D.


2005 ◽  
Vol 127 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Paul J. Antaki

This work uses the “dual phase lag” (DPL) model of heat conduction to offer a new interpretation for experimental evidence of non-Fourier conduction in processed meat that was interpreted previously with hyperbolic conduction. Specifically, the DPL model combines the wave features of hyperbolic conduction with a diffusion-like feature of the evidence not captured by the hyperbolic case. In addition, comparing the new interpretation to Fourier-based alternatives suggests that further study of all the interpretations could help advance the understanding of conduction in the processed meat and other biological materials such as human tissue.


2019 ◽  
Vol 41 (6-7) ◽  
pp. 665-675
Author(s):  
Dhanaraj Savary Nasan ◽  
Thopudurthi Karthikeya Sharma ◽  
Gadale Amba Prasad Rao ◽  
Kotha Madhu Murthy

Sign in / Sign up

Export Citation Format

Share Document