Role of Paraventricular Nucleus in Regulation of Feeding Behaviour and the Design of Intranuclear Neuronal Pathway Communications

2019 ◽  
Vol 26 (3) ◽  
pp. 1231-1242 ◽  
Author(s):  
Shiba Yousefvand ◽  
Farshid Hamidi
2011 ◽  
Vol 71 ◽  
pp. e266
Author(s):  
Zahra Bahari ◽  
Hadi Fathi moghaddam ◽  
Akram Ahangarpur ◽  
Mahin Dianat ◽  
Seyed Ali Mard ◽  
...  

2013 ◽  
Vol 1 (1) ◽  
pp. 10
Author(s):  
Noar Muda Satyawan ◽  
Shelly Tutupoho ◽  
Yusli Wardiatno ◽  
Makoto Tsuchiya

Erosion rate on corals due to activities of other biota is called bioerosion. The rock-boring urchin, Echinometra mathaei, when it is abundant, plays a significant role in benthic ecosystems, including biological processes like coral erosion. During feeding, E. mathaei erodes calcium carbonate besides grazing on algae living on coral, so it plays an important role in both organic and inorganic carbons in coral reefs. The urchin E. mathaei actively feeds during the night time (nocturnal grazer). Although in Okinawa four types (A-D) of the urchin exist, the research only focused on the types A and B. Type A of E. mathaei produced 0.44951 g feces per day on average while type B produced 0.38030 g feces per day. CaCO3 analysis in feces and gut contents showed bioerosion rate of E. mathaei type A was 0.64492 g/individu/day, and 0.54436 g/individu/day in type B. There were no significant differences in bioerosion impact of E. mathaei type A and B© Laju erosi pada karang yang disebabkan oleh biota, dikenal dengan bioerosi. Bulu babi jenis Echinometra mathaei, ketika melimpah, menjadi sangat berpengaruh terhadap ekosistem bentik termasuk proses biologi seperti erosi karang. Selama aktivitas makan, E. mathaei menggerus kalsium karbonat dalam proporsi yang besar di samping alga yang tumbuh menempel pada karang sehingga memiliki peran penting dalam siklus karbon organik dan anorganik di ekosistem terumbu karang. Bulu babi E. mathaei aktif mencari makan pada malam hari (nocturnal grazer). Meskipun di Okinanawa ada 4 tipe (A-D), pada eksperimen kali ini memfokuskan pada tipe A dan B saja. Tipe A E. mathaei rata-rata memproduksi 0,44951 g feses/hari dan tipe B memproduksi 0,38030 g feses/hari. Berdasarkan analisis CaCO3 yang dilakukan pada feses dan isi lambung, laju bioerosi yang disebabkan oleh E. mathaei tipe A sebesar 0,64492 g/individu/hari sedangkan tipe B sebesar 0,54436 g/individu/hari. Tidak terdapat perbedaan dampak bioerosi yang signifikan antara E. mathaei tipe A dan B©


1994 ◽  
Vol 266 (1) ◽  
pp. R228-R236 ◽  
Author(s):  
S. C. Malpas ◽  
J. H. Coote

Vasopressin may play an extrahypothalamic role in the central control of the cardiovascular system, specifically acting as a spinal neurotransmitter in the pathway where the paraventricular nucleus (PVN) alters sympathetic outflow. In this study, the effect of stimulating neuronal cell bodies in the PVN on renal sympathetic nerve activity (RSNA) and the possible involvement of vasopressin in the pathway was investigated in anesthetized rats. The PVN was stimulated by microinjection with 0.2 M D,L-homocysteic acid via a glass micropipette, and the hemodynamic and sympathetic responses were recorded. A computerized sympathetic peak-detection algorithm was applied to recordings of sympathetic discharges to retrieve information about the characteristics of RSNA during PVN stimulation. The algorithm scanned the series of RSNA voltages for significant increases followed by significant decreases in a small cluster of voltage values. Once each synchronized RSNA peak had been detected, its corresponding amplitude and peak-to-peak interval were calculated. PVN stimulation consistently increased the amplitude of RSNA (mean 30 +/- 5.6% over control), arterial pressure, and the peak-to-peak interval of discharges. A V1 vasopressin antagonist intrathecally administered as a 500-pmol dose was subsequently able to completely block the hemodynamic response (blood pressure increase of 14 +/- 5%) and a 35 +/- 6% increase in RSNA in response to PVN stimulation and intrathecal vasopressin. Thus spinal vasopressin is likely to be a neurotransmitter involved in the cardiovascular regulation involving the PVN.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Na Meng ◽  
Ning-Ning Ji ◽  
Ziming Zhou ◽  
Yicheng Qian ◽  
Yu Tang ◽  
...  

Endocrinology ◽  
2007 ◽  
Vol 148 (12) ◽  
pp. 5780-5793 ◽  
Author(s):  
Cristina Núñez ◽  
M. Luisa Laorden ◽  
M. Victoria Milanés

Our previous studies have shown that naloxone-induced morphine withdrawal increases the hypothalamic-pituitary-adrenocortical (HPA) axis activity, which is dependent on a hyperactivity of noradrenergic pathways [nucleus tractus solitarius (NTS) A2] innervating the hypothalamic paraventricular nucleus (PVN). Short-term regulation of catecholamine biosynthesis occurs through phosphorylation of tyrosine hydroxylase (TH), which enhances enzymatic activity. In the present study, the effect of morphine withdrawal on site-specific TH phosphorylation in the PVN and NTS-A2 was determined by quantitative blot immunolabeling and immunohistochemistry using phosphorylation state-specific antibodies. We show that naloxone-induced morphine withdrawal phosphorylates TH at Serine (Ser)-31 but not Ser40 in PVN and NTS-A2, which is associated with both an increase in total TH immunoreactivity in NTS-A2 and an enhanced TH activity in the PVN. In addition, we demonstrated that TH neurons phosphorylated at Ser31 coexpress c-Fos in NTS-A2. We then tested whether pharmacological inhibition of ERK activation by ERK kinase contributes to morphine withdrawal-induced phosphorylation of TH at Ser31. We show that the ability of morphine withdrawal to stimulate phosphorylation at this seryl residue is reduced by SL327, an inhibitor of ERK1/2 activation. These results suggest that morphine withdrawal increases noradrenaline turnover in the PVN, at least in part, via ERK1/2-dependent phosphorylation of TH at Ser31.


2004 ◽  
Vol 286 (5) ◽  
pp. R894-R902 ◽  
Author(s):  
K. J. Latchford ◽  
A. V. Ferguson

The hypothalamic paraventricular nucleus (PVN) plays a critical role in cardiovascular and neuroendocrine regulation. ANG II (ANG) acts throughout the periphery in the maintenance of fluid-electrolyte homeostasis and has also been demonstrated to act as a neurotransmitter in PVN exerting considerable influence on neuronal excitability in this nucleus. The mechanisms underlying the ANG-mediated excitation of PVN magnocellular neurons have yet to be determined. We have used whole cell patch-clamp techniques in hypothalamic slices to examine the effects of ANG on magnocellular neurons. Application of ANG resulted in a depolarization of magnocellular neurons, a response that was abolished in TTX, suggesting an indirect mechanism of action. Interestingly, ANG also increased the frequency of excitatory postsynaptic potentials/currents in magnocellular neurons, an effect that was abolished after application of the glutamate antagonist kynurenic acid. ANG was without effect on the amplitude of excitatory postsynaptic currents, suggesting a presynaptic action on an excitatory interneuron within PVN. The ANG-induced depolarization was shown to be sensitive to kynurenic acid, revealing the requisite role of glutamate in mediating the ANG-induced excitation of magnocellular neurons. These observations indicate that the ANGergic excitation of magnocellular PVN neurons are dependent on an increase in glutamatergic input and thus highlight the importance of a glutamate interneuron in mediating the effects of this neurotransmitter.


Sign in / Sign up

Export Citation Format

Share Document