hypothalamic slices
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 0)

H-INDEX

32
(FIVE YEARS 0)

2017 ◽  
Vol 19 (3) ◽  
pp. 146-153
Author(s):  
A.N. Inyushkin ◽  
K.A. Mistryugov

On rat hypothalamic slices, the properties of spike activity of neurons of suprachiasmatic nucleus are investigated. Four different types of activity are identified: regular, irregular, bursting and low. The possible mechanisms of generation of mentioned types of activity are discussed.



2017 ◽  
Vol 20 (3) ◽  
pp. 170-177
Author(s):  
A.N. Inyushkin ◽  
M.A. Tkacheva ◽  
A.A. Petrova ◽  
T.V. Ryazantseva ◽  
A.V. Parfenova

The properties of spike activity of neurons of the suprachiasmatic nucleus during their membrane depolarisation in vitro are investigated on rat hypothalamic slices. Depolarisation of membrane caused an increase in activity of cells and a decrease in entropy log interspike interval distribution were used as a measure of spikes irregularity generation. Possible mechanisms of the effects are discussed.



2017 ◽  
Vol 312 (4) ◽  
pp. H808-H817 ◽  
Author(s):  
Olga Dergacheva ◽  
Akihiro Yamanaka ◽  
Alan R. Schwartz ◽  
Vsevolod Y. Polotsky ◽  
David Mendelowitz

Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic, neurotransmission in these pathways.



2012 ◽  
Vol 303 (2) ◽  
pp. E243-E252 ◽  
Author(s):  
Vernon L. Gay ◽  
Peter J. Hemond ◽  
Deena Schmidt ◽  
Michael P. O'Boyle ◽  
Zoe Hemond ◽  
...  

Expression of GFP in GnRH neurons has allowed for studies of individual GnRH neurons. We have demonstrated previously the preservation of physiological function in male GnRH-GFP mice. In the present study, we confirm using biocytin-filled GFP-positive neurons in the hypothalamic slice preparation that GFP-expressing somata, axons, and dendrites in hypothalamic slices from GnRH-GFP rats are GnRH1 peptide positive. Second, we used repetitive sampling to study hormone secretion from GnRH-GFP transgenic rats in the homozygous, heterozygous, and wild-type state and between transgenic and Wistar males after ∼4 yr of backcrossing. Parameters of hormone secretion were not different between the three genetic groups or between transgenic males and Wistar controls. Finally, we performed long-term recording in as many GFP-identified GnRH neurons as possible in hypothalamic slices to determine their patterns of discharge. In some cases, we obtained GnRH neuronal recordings from individual males in which blood samples had been collected the previous day. Activity in individual GnRH neurons was expressed as total quiescence, a continuous pattern of firing of either low or relatively high frequencies or an intermittent pattern of firing. In males with both intensive blood sampling (at 6-min intervals) and recordings from their GnRH neurons, we analyzed the activity of GnRH neurons with intermittent activity above 2 Hz using cluster analysis on both data sets. The average number of pulses was 3.9 ± 0.6/h. The average number of episodes of firing was 4.0 ± 0.6/h. Therefore, the GnRH pulse generator may be maintained in the sagittal hypothalamic slice preparation.



Endocrinology ◽  
2011 ◽  
Vol 152 (5) ◽  
pp. 2011-2019 ◽  
Author(s):  
Natividad Ybarra ◽  
Peter J. Hemond ◽  
Michael P. O'Boyle ◽  
Kelly J. Suter

Adult GnRH neurons exhibit a stereotypic morphology with a small soma, single axon, and single dendrite arising from the soma with little branching. The adult morphology of GnRH neurons in mice reflects an anatomical consolidation of dendrites over postnatal development. We examined this issue in rat GnRH neurons with biocytin filling in live hypothalamic slices from infant males, as adult littermates and in gonad-intact males, castrated males, and in males with one of three levels of testosterone (T) treatment. Somatic area and total dendritic length were significantly greater in infant males than in adults. Moreover, total numbers of dendrite branches were greater in infant males as compared with adults. The number of higher order branches and the lengths of higher order branches were also greater in infant males than in adults. Most interestingly, in adults a single dendrite arose from the somata, consistently at 180° from the axon. In contrast, prepubertal animals had an average of 2.2 ± 0.2 primary dendrites arising from somata (range, one to seven primary dendrites). Angles relative to the axon at which dendrites in prepubertal males emanated from GnRH somata were highly variable. Castration at 25 d of age and castration at 25 d of age with one of three levels of T treatment did not influence morphological parameters when GnRH neurons were examined between 40 d and 48 d of age. Thus, a spatially selective remodeling of primary dendrites and consolidation of distal GnRH dendritic arbors occurs during postnatal development and is largely independent of T.



2008 ◽  
Vol 24 (6) ◽  
pp. 345-350 ◽  
Author(s):  
Yue Lin ◽  
Ru Wang ◽  
Xin Wang ◽  
Rui-Rong He ◽  
Yu-Ming Wu


Endocrinology ◽  
2008 ◽  
Vol 150 (1) ◽  
pp. 333-340 ◽  
Author(s):  
Jing Xu ◽  
Melissa A. Kirigiti ◽  
Michael A. Cowley ◽  
Kevin L. Grove ◽  
M. Susan Smith

Increased neuropeptide Y (NPY) activity drives the chronic hyperphagia of lactation and may contribute to the suppression of GnRH activity. The majority of GnRH neurons are contacted by NPY fibers, and GnRH cells express NPY Y5 receptor (Y5R). Therefore, NPY provides a neurocircuitry for information about food intake/energy balance to be directly transmitted to GnRH neurons. To investigate the effects of lactation on GnRH neuronal activity, hypothalamic slices were prepared from green fluorescent protein-GnRH transgenic rats. Extracellular loose-patch recordings determined basal GnRH neuronal activity from slices of ovariectomized control and lactating rats. Compared with controls, hypothalamic slices from lactating rats had double the number of quiescent GnRH neurons (14.51 ± 2.86 vs. 7.04 ± 2.84%) and significantly lower firing rates of active GnRH neurons (0.25 ± 0.02 vs. 0.37 ± 0.03 Hz). To study the NPY-postsynaptic Y5R system, whole-cell current-clamp recordings were performed in hypothalamic slices from control rats to examine NPY/Y5R antagonist effects on GnRH neuronal resting membrane potential. Under tetrodotoxin treatment, NPY hyperpolarized GnRH neurons from −56.7 ± 1.94 to −62.1 ± 1.83 mV; NPY’s effects were blocked by Y5R antagonist. To determine whether increased endogenous NPY tone contributes to GnRH neuronal suppression during lactation, hypothalamic slices were treated with Y5R antagonist. A significantly greater percentage of GnRH cells were activated in slices from lactating rats (52%) compared with controls (28%). These results suggest that: 1) basal GnRH neuronal activity is suppressed during lactation; 2) NPY can hyperpolarize GnRH neurons via postsynaptic Y5R; and 3) increased inhibitory NPY tone during lactation is a component of the mechanisms responsible for suppression of GnRH neuronal activity. Neuropeptide Y (NPY) directly hyperpolarizes GnRH neurons via postsynaptic NPY Y5 receptor. Increased inhibitory NPY tone during lactation is an important component of the suppression of GnRH neuronal activity.



Metabolism ◽  
2008 ◽  
Vol 57 (1) ◽  
pp. 40-48 ◽  
Author(s):  
Carmen Sanz ◽  
Patricia Vázquez ◽  
M. Angeles Navas ◽  
Elvira Alvarez ◽  
Enrique Blázquez


2007 ◽  
Vol 193 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Carmen Sanz ◽  
Isabel Roncero ◽  
Patricia Vázquez ◽  
M Angeles Navas ◽  
Enrique Blázquez

In an attempt to study the role of glucokinase (GK) and the effects of glucose and peptides on GK gene expression and on the activity of this enzyme in the hypothalamus, we used two kinds of biological models: hypothalamic GT1-7 cells and rat hypothalamic slices. The expression of the GK gene in GT1-7 cells was reduced by insulin (INS) and was not modified by different glucose concentrations, while GK enzyme activities were significantly reduced by the different peptides. Interestingly, a distinctive pattern of GK activities between the ventromedial hypothalamus (VMH) and lateral hypothalamus (LH) were found, with higher enzyme activities in the VMH as the glucose concentrations rose, while LH enzyme activities decreased at 2.8 and 20 mM glucose, the latter effect being prevented by incubation with INS. These effects were produced only by d-glucose and the modifications found were due to GK, but not to other hexokinases. In addition, GK activities in the VMH and the LH were reduced by glucagon-like peptide 1, leptin, orexin B, INS, and neuropeptide Y (NPY), but this effect was only statistically significant for NPY in LH. Our results indicate that the effects of both glucose and peptides occur on GK enzyme activities rather than on GK gene transcription. Moreover, the effects of glucose and INS on GK activity suggest that in the brain GK behaves in a manner opposite to that in the liver, which might facilitate its role in glucose sensing. Finally, hypothalamic slices seem to offer a good physiological model to discriminate the effects between different areas.



Sign in / Sign up

Export Citation Format

Share Document