Influence of Temperature on the Coefficient of Thermal Expansion of Monocrystals of Silicon

2005 ◽  
Vol 41 (4) ◽  
pp. 531-537 ◽  
Author(s):  
A. V. Mazur ◽  
L. P. Stepanova
2007 ◽  
Vol 29 (1) ◽  
pp. 58-64 ◽  
Author(s):  
Nguyen Dinh Duc ◽  
Hoang Van Tung ◽  
Do Thanh Hang

Composite material is widely used in modern structures. Many researchers have been involved in studying, developing and applying this kind of material. The composite material of spherical particles is a material composed of continuous matrix phase and spherical particles. In modern technique, it is very necessary to consider the influence of temperature on toughness and stability of structures. Therefore, determining the coefficient of thermal expansion of composite as a function of the coefficients and volume fractions of matrix and particle phases is a practical requirement. In this paper. we would like to introduce an alternative derivation method in order to obtain the thermal expansion coefficient of two-phase composite of spherical particles. Our results are the same as Vanin's and other authors'.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


2010 ◽  
Vol 25 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Daniel Żarski ◽  
Dariusz Kucharczyk ◽  
Wojciech Sasinowski ◽  
Katarzyna Targońska ◽  
Andrzej Mamcarz

Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract NILO alloy 36 is a binary iron-nickel alloy having a very low and essentially constant coefficient of thermal expansion at atmospheric temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-79. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract UNISPAN LR35 offers the lowest coefficient of thermal expansion of any alloy now available. It is a low residual modification of UNISPAN 36 for fully achieving the demanding operational level of precision equipment. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: Fe-46. Producer or source: Cyclops Corporation.


Alloy Digest ◽  
1998 ◽  
Vol 47 (4) ◽  

Abstract Deltalloy 4032 has good machinability and drilling characteristics when using single-point or multispindle screw machines and an excellent surface finish using polycrystalline or carbide tooling. The alloy demonstrates superior wear resistance and may eliminate the need for hard coat anodizing. Deltalloy 4032 is characterized by high strength and a low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, and tensile properties. It also includes information on corrosion and wear resistance as well as machining and surface treatment. Filing Code: AL-347. Producer or source: ALCOA Wire, Rod & Bar Division.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract RED X-20 is a heat treatable hypereutectic aluminum-silicon alloy with excellent wear resistance and a very low coefficient of thermal expansion. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-89. Producer or source: Apex Smelting Company.


Sign in / Sign up

Export Citation Format

Share Document