scholarly journals Determination of stress and strain concentrations in the elastic-plastic materials under bending and torsion

2012 ◽  
Vol 47 (4) ◽  
pp. 545-552
Author(s):  
M. Kurek ◽  
T. Łagoda ◽  
P. Warmuzek
2007 ◽  
Vol 345-346 ◽  
pp. 805-808 ◽  
Author(s):  
Miguel Angel Garrido ◽  
Jesus Rodríguez

Young’s modulus and hardness data obtained from nanoindentation are commonly affected by phenomena like pile up or sink in, when elastic-plastic materials are tested. In this work, a finite element model was used to evaluate the pile up effect on the determination of mechanical properties from spherical indentation in a wide range of elastic-plastic materials. A new procedure, based on a combination of results obtained from tests performed at multiple maximum loads, is suggested.


1994 ◽  
Vol 61 (3) ◽  
pp. 511-518 ◽  
Author(s):  
H. C. Lin ◽  
P. M. Naghdi

The main purpose of this paper is to present a general (purely mechanical) constrained theory of finitely deforming elastic-plastic materials. Our development is based on a strain-space formulation of plasticity and requires a detailed examination of the effect of constraint on various constitutive ingredients in the unconstrained theory, including the yield functions (in both the stress and strain spaces), the loading criteria, and various response functions. Also examined is the effect of constraint on the restrictions arising from the work inequality of Naghdi and Trapp (1975b).


1993 ◽  
Vol 28 (4) ◽  
pp. 237-246 ◽  
Author(s):  
J G Williams

It is shown that solutions for the energy release rate G may be obtained for a uniform strip by simply considering the change in length. The simplicity of the system enables a wide range of boundary conditions and material properties to be incorporated into the analysis and G may be computed for elastic and elastic-plastic materials. Inextensible flexible strips are considered first as they are useful for modelling peel tests and these results are developed to cover elastic and elastic-plastic behaviour. Elastic strips in tension are also considered and the analysis is developed to include transverse loading which induces bending. General considerations of path and loading history dependence are also included.


Sign in / Sign up

Export Citation Format

Share Document