scholarly journals Odd Laplacians: geometrical meaning of potential and modular class

2017 ◽  
Vol 107 (7) ◽  
pp. 1195-1214 ◽  
Author(s):  
Hovhannes M. Khudaverdian ◽  
Matthew T. Peddie
1999 ◽  
Vol 121 (1) ◽  
pp. 15-20 ◽  
Author(s):  
J. Lee ◽  
J. Duffy ◽  
M. Keler

The paper investigates primarily the geometrical meaning of the determinant of the Jacobian (det j) of the three connector lines of a planar in-parallel platform device using reciprocity. A remarkably simple result is deduced: The maximum value of det j namely, det jm is simply one-half of the sum of the lengths of the sides of the moving triangular platform. Further, this result is shown to be independent of the location of the fixed pivots in the base. A dimensionless ratio λ = |det j|/det jm is defined as the quality index (0 ≤ λ ≤ 1) and it is proposed here to use it to measure “closeness” to a singularity. An example which determines the optimal design by comparing different shaped moving platforms having the same det jm is given and demonstrates that the optimal shape is in fact an equilateral triangle


2011 ◽  
Vol 08 (03) ◽  
pp. 511-556 ◽  
Author(s):  
GIUSEPPE BANDELLONI

The relativistic symmetric tensor fields are, in four dimensions, the right candidates to describe Higher Spin Fields. Their highest spin content is isolated with the aid of covariant conditions, discussed within a group theory framework, in which auxiliary fields remove the lower intrinsic angular momenta sectors. These conditions are embedded within a Lagrangian Quantum Field theory which describes an Higher Spin Field interacting with a Classical background. The model is invariant under a (B.R.S.) symmetric unconstrained tensor extension of the reparametrization symmetry, which include the Fang–Fronsdal algebra in a well defined limit. However, the symmetry setting reveals that the compensator field, which restore the Fang–Fronsdal symmetry of the free equations of motion, is in the existing in the framework and has a relevant geometrical meaning. The Ward identities coming from this symmetry are discussed. Our constraints give the result that the space of the invariant observables is restricted to the ones constructed with the Highest Spin Field content. The quantum extension of the symmetry reveals that no new anomaly is present. The role of the compensator field in this result is fundamental.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jessica Halliday ◽  
Emilio Artacho

Known force terms arising in the Ehrenfest dynamics of quantum electrons and classical nuclei, due to a moving basis set for the former, can be understood in terms of the curvature of the manifold hosting the quantum states of the electronic subsystem. Namely, the velocity-dependent terms appearing in the Ehrenfest forces on the nuclei acquire a geometrical meaning in terms of the intrinsic curvature of the manifold, while Pulay terms relate to its extrinsic curvature.


Author(s):  
Guozhi Li ◽  
Fuhai Zhang ◽  
Yili Fu ◽  
Shuguo Wang

Purpose The purpose of this paper is to propose an error model for serial robot kinematic calibration based on dual quaternions. Design/methodology/approach The dual quaternions are the combination of dual-number theory and quaternion algebra, which means that they can represent spatial transformation. The dual quaternions can represent the screw displacement in a compact and efficient way, so that they are used for the kinematic analysis of serial robot. The error model proposed in this paper is derived from the forward kinematic equations via using dual quaternion algebra. The full pose measurements are considered to apply the error model to the serial robot by using Leica Geosystems Absolute Tracker (AT960) and tracker machine control (T-MAC) probe. Findings Two kinematic-parameter identification algorithms are derived from the proposed error model based on dual quaternions, and they can be used for serial robot calibration. The error model uses Denavit–Hartenberg (DH) notation in the kinematic analysis, so that it gives the intuitive geometrical meaning of the kinematic parameters. The absolute tracker system can measure the position and orientation of the end-effector (EE) simultaneously via using T-MAC. Originality/value The error model formulated by dual quaternion algebra contains all the basic geometrical parameters of serial robot during the kinematic calibration process. The vector of dual quaternion error can be used as an indicator to represent the trend of error change of robot’s EE between the nominal value and the actual value. The accuracy of the EE is improved after nearly 20 measurements in the experiment conduct on robot SDA5F. The simulation and experiment verify the effectiveness of the error model and the calibration algorithms.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1547
Author(s):  
Stephen C. Anco ◽  
Bao Wang

A geometrical formulation for adjoint-symmetries as one-forms is studied for general partial differential equations (PDEs), which provides a dual counterpart of the geometrical meaning of symmetries as tangent vector fields on the solution space of a PDE. Two applications of this formulation are presented. Additionally, for systems of evolution equations, adjoint-symmetries are shown to have another geometrical formulation given by one-forms that are invariant under the flow generated by the system on the solution space. This result is generalized to systems of evolution equations with spatial constraints, where adjoint-symmetry one-forms are shown to be invariant up to a functional multiplier of a normal one-form associated with the constraint equations. All of the results are applicable to the PDE systems of interest in applied mathematics and mathematical physics.


2004 ◽  
Vol 69 (20) ◽  
pp. 6572-6589 ◽  
Author(s):  
David J. Connolly ◽  
Patrick M. Lacey ◽  
Mary McCarthy ◽  
Cormac P. Saunders ◽  
Anne-Marie Carroll ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document