scholarly journals Lie polynomials and a twistorial correspondence for amplitudes

2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Hadleigh Frost ◽  
Lionel Mason

AbstractWe review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of $$\mathcal {M}_{0,n}$$ M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle $$T^*_D\mathcal {M}_{0,n}$$ T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and $$\mathcal {K}_n$$ K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain $$n-3$$ n - 3 -forms on $$\mathcal {K}_n$$ K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral $$n-3$$ n - 3 -planes in $$\mathcal {K}_n$$ K n introduced by ABHY.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Erick Chacón ◽  
Silvia Nagy ◽  
Chris D. White

Abstract The Weyl double copy is a procedure for relating exact solutions in biadjoint scalar, gauge and gravity theories, and relates fields in spacetime directly. Where this procedure comes from, and how general it is, have until recently remained mysterious. In this paper, we show how the current form and scope of the Weyl double copy can be derived from a certain procedure in twistor space. The new formalism shows that the Weyl double copy is more general than previously thought, applying in particular to gravity solutions with arbitrary Petrov types. We comment on how to obtain anti-self-dual as well as self-dual fields, and clarify some conceptual issues in the twistor approach.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Nikhil Kalyanapuram

Abstract We combine the technology of the theory of polytopes and twisted intersection theory to derive a large class of double copy relations that generalize the classical relations due to Kawai, Lewellen and Tye (KLT). To do this, we first study a generalization of the scattering equations of Cachazo, He and Yuan. While the scattering equations were defined on ℳ0, n — the moduli space of marked Riemann spheres — the new scattering equations are defined on polytopes known as accordiohedra, realized as hyperplane arrangements. These polytopes encode as patterns of intersection the scattering amplitudes of generic scalar theories. The twisted period relations of such intersection numbers provide a vast generalization of the KLT relations. Differential forms dual to the bounded chambers of the hyperplane arrangements furnish a natural generalization of the Bern-Carrasco-Johansson (BCJ) basis, the number of which can be determined by counting the number of solutions of the generalized scattering equations. In this work the focus is on a generalization of the BCJ expansion to generic scalar theories, although we use the labels KLT and BCJ interchangeably.


2014 ◽  
Vol 150 (11) ◽  
pp. 1836-1868 ◽  
Author(s):  
Marcos Jardim ◽  
Misha Verbitsky

AbstractA trisymplectic structure on a complex $2n$-manifold is a three-dimensional space ${\rm\Omega}$ of closed holomorphic forms such that any element of ${\rm\Omega}$ has constant rank $2n$, $n$ or zero, and degenerate forms in ${\rm\Omega}$ belong to a non-degenerate quadric hypersurface. We show that a trisymplectic manifold is equipped with a holomorphic 3-web and the Chern connection of this 3-web is holomorphic, torsion-free, and preserves the three symplectic forms. We construct a trisymplectic structure on the moduli of regular rational curves in the twistor space of a hyperkähler manifold, and define a trisymplectic reduction of a trisymplectic manifold, which is a complexified form of a hyperkähler reduction. We prove that the trisymplectic reduction in the space of regular rational curves on the twistor space of a hyperkähler manifold $M$ is compatible with the hyperkähler reduction on $M$. As an application of these geometric ideas, we consider the ADHM construction of instantons and show that the moduli space of rank $r$, charge $c$ framed instanton bundles on $\mathbb{C}\mathbb{P}^{3}$ is a smooth trisymplectic manifold of complex dimension $4rc$. In particular, it follows that the moduli space of rank two, charge $c$ instanton bundles on $\mathbb{C}\mathbb{P}^{3}$ is a smooth complex manifold dimension $8c-3$, thus settling part of a 30-year-old conjecture.


This paper forms a part of the twistor programme whereby constructions of physics on Minkowski space are transferred, it is hoped, to simpler constructions on Penrose’s twistor-space . We show how the Penrose transform may be used to describe solutions of the Dirac equations on Minkowski space in terms of certain cohomology classes on a related five-dimensional complex manifold. This is accomplished along the same lines as the corresponding representation of massless fields. It means that Penrose’s integral formulae for massive fields may be interpreted cohomologically. We also give a brief discussion of the spin operator in twistor space.


1994 ◽  
Vol 49 (10) ◽  
pp. 5173-5181 ◽  
Author(s):  
Dongsu Bak ◽  
D. Cangemi ◽  
R. Jackiw

Author(s):  
Florian Beck ◽  
Sebastian Heller ◽  
Markus Röser

Abstract We study a natural functional on the space of holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We show that the energy is the residue of the pull-back along the section of a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. As a byproduct, we show the existence of a hyper-Kähler potentials for new components of real holomorphic sections of twistor spaces of hyper-Kähler manifolds with rotating $$S^1$$ S 1 -action. Additionally, we prove that for a certain class of real holomorphic sections of the Deligne–Hitchin moduli space, the energy functional is basically given by the Willmore energy of corresponding equivariant conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne–Hitchin moduli space from the space of twistor lines.


2009 ◽  
Vol 51 (1) ◽  
pp. 19-29 ◽  
Author(s):  
MILAGROS IZQUIERDO ◽  
DANIEL YING

AbstractA closed Riemann surface which can be realized as a three-sheeted covering of the Riemann sphere is called trigonal, and such a covering is called a trigonal morphism. If the trigonal morphism is a cyclic regular covering, the Riemann surface is called a cyclic trigonal Riemann surface. Using the characterization of cyclic trigonality by Fuchsian groups, we find the structure of the space of cyclic trigonal Riemann surfaces of genus 4.


Sign in / Sign up

Export Citation Format

Share Document