scholarly journals Braided $$\varvec{L_{\infty }}$$-algebras, braided field theory and noncommutative gravity

2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Marija Dimitrijević Ćirić ◽  
Grigorios Giotopoulos ◽  
Voja Radovanović ◽  
Richard J. Szabo

AbstractWe define a new homotopy algebraic structure, that we call a braided $$L_\infty $$ L ∞ -algebra, and use it to systematically construct a new class of noncommutative field theories, that we call braided field theories. Braided field theories have gauge symmetries which realize a braided Lie algebra, whose Noether identities are inhomogeneous extensions of the classical identities, and which do not act on the solutions of the field equations. We use Drinfel’d twist deformation quantization techniques to generate new noncommutative deformations of classical field theories with braided gauge symmetries, which we compare to the more conventional theories with star-gauge symmetries. We apply our formalism to introduce a braided version of general relativity without matter fields in the Einstein–Cartan–Palatini formalism. In the limit of vanishing deformation parameter, the braided theory of noncommutative gravity reduces to classical gravity without any extensions.

2002 ◽  
Vol 29 (12) ◽  
pp. 687-699 ◽  
Author(s):  
A. Echeverría-Enríquez ◽  
M. C. Muñoz-Lecanda ◽  
N. Román-Roy

We give a geometric formulation of the field equations in the Lagrangian and Hamiltonian formalisms of classical field theories (of first order) in terms of multivector fields. This formulation enables us to discuss the existence and nonuniqueness of solutions of these equations, as well as their integrability.


2015 ◽  
Vol 12 (08) ◽  
pp. 1560019 ◽  
Author(s):  
Pedro Daniel Prieto-Martínez ◽  
Narciso Román-Roy

We state a unified geometrical version of the variational principles for second-order classical field theories. The standard Lagrangian and Hamiltonian variational principles and the corresponding field equations are recovered from this unified framework.


2005 ◽  
Vol 02 (05) ◽  
pp. 839-871 ◽  
Author(s):  
MANUEL DE LEÓN ◽  
JESÚS MARÍN-SOLANO ◽  
JUAN CARLOS MARRERO ◽  
MIGUEL C. MUÑOZ-LECANDA ◽  
NARCISO ROMÁN-ROY

We present a geometric algorithm for obtaining consistent solutions to systems of partial differential equations, mainly arising from singular covariant first-order classical field theories. This algorithm gives an intrinsic description of all the constraint submanifolds. The field equations are stated geometrically, either representing their solutions by integrable connections or, what is equivalent, by certain kinds of integrable m-vector fields. First, we consider the problem of finding connections or multivector fields solutions to the field equations in a general framework: a pre-multisymplectic fiber bundle (which will be identified with the first-order jet bundle and the multi-momentum bundle when Lagrangian and Hamiltonian field theories are considered). Then, the problem is stated and solved in a linear context, and a pointwise application of the results leads to the algorithm for the general case. In a second step, the integrability of the solutions is also studied. Finally, the method is applied to Lagrangian and Hamiltonian field theories and, for the former, the problem of finding holonomic solutions is also analyzed.


2007 ◽  
Vol 19 (10) ◽  
pp. 1117-1147 ◽  
Author(s):  
NARCISO ROMÁN-ROY ◽  
MODESTO SALGADO ◽  
SILVIA VILARIÑO

This paper is devoted to studying symmetries of k-symplectic Hamiltonian and Lagrangian first-order classical field theories. In particular, we define symmetries and Cartan symmetries and study the problem of associating conservation laws to these symmetries, stating and proving Noether's theorem in different situations for the Hamiltonian and Lagrangian cases. We also characterize equivalent Lagrangians, which lead to an introduction of Lagrangian gauge symmetries, as well as analyzing their relation with Cartan symmetries.


1951 ◽  
Vol 3 ◽  
pp. 195-207 ◽  
Author(s):  
L. Infeld ◽  
A. E. Scheidegger

Among the classical field theories, general relativity theory occupies a somewhat peculiar place. Unlike those of most other field theories, the field equations in relativity theory are non-linear. This implies that many facts, well known in linear theories, have no analogues in general relativity theory, and conversely. The equations of motion of the sources of the gravitational field are contained in the field equations, a fact which does not apply for the motion of an electron in the electromagnetic field. Conversely, it is difficult to define the notion of a wave (familiar in electrodynamics) in relativity theory; for, the linear principle of superposition is crucial for the existence of waves (at least in the sense that the notion of a wave is normally used).


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Eric Lescano ◽  
Martín Mayo

Abstract L∞ algebras describe the underlying algebraic structure of many consistent classical field theories. In this work we analyze the algebraic structure of Gauged Double Field Theory in the generalized flux formalism. The symmetry transformations consist of a generalized deformed Lie derivative and double Lorentz transformations. We obtain all the non-trivial products in a closed form considering a generalized Kerr-Schild ansatz for the generalized frame and we include a linear perturbation for the generalized dilaton. The off-shell structure can be cast in an L3 algebra and when one considers dynamics the former is exactly promoted to an L4 algebra. The present computations show the fully algebraic structure of the fundamental charged heterotic string and the $$ {L}_3^{\mathrm{gauge}} $$ L 3 gauge structure of (Bosonic) Enhanced Double Field Theory.


2016 ◽  
Vol 13 (08) ◽  
pp. 1640001 ◽  
Author(s):  
Nicoleta Voicu

The paper presents a general geometric approach to energy–momentum tensors in Lagrangian field theories, based on a global Hilbert-type definition. The approach is consistent with the ones defining energy–momentum tensors in terms of hypermomentum maps given by the diffeomorphism invariance of the Lagrangian — and, in a sense, complementary to these, with the advantage of an increased simplicity of proofs and also, opening up new insights on the topic. A special attention is paid to the particular cases of metric and metric-affine theories.


2012 ◽  
Vol 39 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Paolo Mariano

The Hamilton-Eshelby stress is a basic ingredient in the description of the evolution of point, lines and bulk defects in solids. The link between the Hamilton-Eshelby stress and the derivative of the free energy with respect to the material metric in the plasticized intermediate configuration, in large strain regime, is shown here. The result is a modified version of Rosenfeld-Belinfante theorem in classical field theories. The origin of the appearance of the Hamilton-Eshelby stress (the non-inertial part of the energy-momentum tensor) in dissipative setting is also discussed by means of the concept of relative power.


2013 ◽  
Vol 11 (01) ◽  
pp. 1450007 ◽  
Author(s):  
MANUEL DE LEÓN ◽  
SILVIA VILARIÑO

In this paper, we extend the geometric formalism of the Hamilton–Jacobi theory for time-dependent Mechanics to the case of classical field theories in the k-cosymplectic framework.


Sign in / Sign up

Export Citation Format

Share Document