scholarly journals Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator

Meccanica ◽  
2015 ◽  
Vol 50 (11) ◽  
pp. 2691-2707 ◽  
Author(s):  
Yang Yu ◽  
Yancheng Li ◽  
Jianchun Li
Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 284 ◽  
Author(s):  
Bing Li ◽  
Yongde Zhang ◽  
Lipeng Yuan ◽  
Xiaolin Xi

Prostate cancer has one of the highest incidences of male malignant tumors worldwide. Its treatment involves the robotic implantation of radioactive seeds in the perineum, a safe and effective procedure for early, low-risk prostate cancer. In order to ensure precise positioning, the seed implantation needle is set at low terminal velocity. In this paper, the motion output position instability caused by the friction torque of the robot’s motor and rotating joint during low velocity motion was analyzed and studied. This paper also presents a compensation control method based on the LuGre friction model, which offers piecewise parameter identification with GA-PSO. First, based on an analysis of its structure and working principle, the friction torque model of the robotic system and the torque model of the driving motor are established, and the influence of friction torque on motion stability analyzed. Then, based on experimental data of the relationship between velocity and friction torque for no-friction compensation, the velocity point of the minimum torque of the rotating joint and the critical Stribeck velocity point were used for segmental parameter identification; cubic spline interpolation was used for segmental fitting. Furthermore, on the basis of the LuGre model identification method, parameter identification of the genetic algorithm-particle swarm optimization, and compensation control of the LuGre friction model, a control method is analysed and set forth. Malab2017a/Simulink simulation software was used to simulate and analyze the control method, and verify its feasibility. Finally, the cantilever prostate seed implantation robot system was tested to verify the effectiveness of the segmented identification method and the compensation control strategy. The results reveal that motion output position stability at low velocity meets the requirements of the cantilever prostate seed implantation robot, thus providing a vital reference for further research.


2011 ◽  
Vol 343-344 ◽  
pp. 28-32
Author(s):  
Xu Zeng ◽  
Shu Guang Zuo ◽  
Xu Dong Wu

Considering the mechanism interaction between the tire tread and road surface, a dynamic model is established based on LuGre friction model in this paper. The parameter identification of wear coefficient in Archard model is proceeded by simulation in accordance with the experiment data in the correlative references based on the computational method of abrasion loss in Archard model. The results show that this model can fit the experiment data well, provide a theoretic instruction to fulfill the tire wear prediction and lay the foundation of further research in this field.


Author(s):  
Xingjian Wang ◽  
Shaoping Wang

LuGre dynamic friction model has been widely used in servo system for friction compensation, but it increases the difficulty of controller design because its parameters are difficult to be identified and its internal state is immeasurable. This paper presents a parameter identification technique based on novel evolutionary algorithm (NEA) for LuGre friction model. In order to settle the practical digital implementation problem of LuGre model, this paper also proposes a modified dual-observer with discontinuous mapping and smooth transfer function. On the basis of the parameter identification results and the modified dual-observer, this paper designs an adaptive control algorithm with dynamic friction compensation for hydraulic servo system. The comparative experiments indicate that the proposed parameter identification technique and the adaptive control algorithm with modified dual-observer are effective with high tracking performance.


Meccanica ◽  
2021 ◽  
Author(s):  
Gábor Csernák ◽  
Gábor Licskó

AbstractThe responses of a simple harmonically excited dry friction oscillator are analysed in the case when the coefficients of static and kinetic coefficients of friction are different. One- and two-parameter bifurcation curves are determined at suitable parameters by continuation method and the largest Lyapunov exponents of the obtained solutions are estimated. It is shown that chaotic solutions can occur in broad parameter domains—even at realistic friction parameters—that are tightly enclosed by well-defined two-parameter bifurcation curves. The performed analysis also reveals that chaotic trajectories are bifurcating from special asymmetric solutions. To check the robustness of the qualitative results, characteristic bifurcation branches of two slightly modified oscillators are also determined: one with a higher harmonic in the excitation, and another one where Coulomb friction is exchanged by a corresponding LuGre friction model. The qualitative agreement of the diagrams supports the validity of the results.


Sign in / Sign up

Export Citation Format

Share Document