Metallothermic Reduction of Natural Cassiterite

Metallurgist ◽  
2021 ◽  
Author(s):  
S. N. Tyushnyakov ◽  
R. I. Gulyaeva ◽  
L. Yu. Udoeva ◽  
S. V. Sergeeva ◽  
S. A. Petrova
Author(s):  
M. Leuchtenmueller ◽  
C. Legerer ◽  
U. Brandner ◽  
J. Antrekowitsch

AbstractEffective recycling of zinc-containing industrial wastes, most importantly electric arc furnace dust, is of tremendous importance for the circular economy of the steel and zinc industry. Herein, we propose a comprehensive kinetic model of the combined carbothermic and metallothermic reduction of zinc oxide in a metal bath process. Pyro-metallurgical, large-scale lab experiments of a carbon-saturated iron melt as reduction agent for a molten zinc oxide slag were performed to determine reaction constants and accurately predict mass transfer coefficients of the proposed kinetic model. An experimentally determined kinetic model demonstrates that various reactions run simultaneously during the reduction of zinc oxide and iron oxide. For the investigated slag composition, the temperature-dependent contribution of the metallothermic zinc oxide reduction was between 25 and 50 pct of the overall reaction mechanism. The mass transfer coefficient of the zinc oxide reduction quadrupled from 1400 °C to 1500 °C. The zinc recovery rate was > 99.9 pct in all experiments.


Author(s):  
V. I. Vershinnikov ◽  
T. I. Ignat’eva ◽  
V. V. Aleshin ◽  
Yu. M. Mikhailov

Metallurg ◽  
2021 ◽  
pp. 52-61
Author(s):  
S.N. Tyushnyakov ◽  
R.I. Gulyaeva ◽  
L.Yu. Udoeva ◽  
S.V. Sergeeva ◽  
S.A. Petrova

2018 ◽  
Vol 37 (9-10) ◽  
pp. 889-898 ◽  
Author(s):  
Mehmet Bugdayci ◽  
Murat Alkan ◽  
Ahmet Turan ◽  
Onuralp Yücel

AbstractMill scale (MS) has a potential to use as an iron source because of its high iron content. MS mainly consists of a mixture of iron oxides, metallic iron and other base metal oxides. MS is formed on the surfaces of steel ingots during continuous casting as a waste material. In this study, the use of MS as an iron source for the production of carbon-free iron containing alloys (unalloyed iron, Fe-Ni, Fe-Cr-Ni, Fe-Cr-Ni-Mo) via a metallothermic reduction process was investigated. Thermodynamic calculations and the experimental studies were performed on the basis of 100 g of MS. The effects of different stoichiometric amounts of MS and aluminum (Al) powders (as reductant) were investigated for the production of unalloyed Fe. While, different amount of metal oxide ratios and their effects on metal recoveries, compositions and microstructure of final alloys were studied during Fe-based alloys production. The highest iron recovery during unalloyed Fe production was obtained as 95.14 % by using 100 g of MS and 100 % stoichiometric Al (28.6 g) containing mixture. In Fe-based alloys production series, the highest metal recovery values were reached up to 95.0 % for Fe, 95.1 % for Ni, 68.3 % for Cr and 77.2 % for Mo, respectively.


2019 ◽  
Vol 956 ◽  
pp. 55-66
Author(s):  
Bei Lei Yan ◽  
Wei Wei Meng ◽  
San Chao Zhao

In this work, a thermal reduction process via ultrafine titanium powder as the reducing agent under argon atmosphere is firstly used to prepare Ti4O7. Compared with the conventional method, this experiment process reduces the sintering temperature to 850°C. The phase transformation and the morphology of the as-prepared powders are examined by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). Besides, it is found that the Ti4O7 powders obtained by titanium thermal reduction method exhibited the crystal structure, distinctly possessing an average particle size around 750 nm. The as-prepared Ti4O7 nanoparticles are used as anode active material in lithium battery. The results demonstrate that the anode with Ti4O7 calcined at 850°C by titanium thermal reduction method exhibited insertion/extraction lithium ion property.


2001 ◽  
Vol 16 (9) ◽  
pp. 2544-2549 ◽  
Author(s):  
Hongmin Zhu ◽  
Donald R. Sadoway

The analysis of metallothermic reduction as an electronically mediated reaction predicted that the particle size of solid product could be reduced if the reaction were conducted in a medium that is a mixed conductor (ionic and electronic). This prediction was confirmed by reacting TaCl5 with sodium, each dissolved in liquid ammonia, to produce tantalum powder having an average particle size over an order of magnitude finer than the micron-sized powders produced commercially today. Metallothermic reduction in a mixed conducting medium has been extended to a multicomponent system in order to synthesize nanosized powder of Nb3Al by co-reduction of NbCl5 and AlCl3 both dissolved in liquid ammonia.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 985 ◽  
Author(s):  
Ilia Beloglazov ◽  
Sergey Savchenkov ◽  
Vladimir Bazhin ◽  
Rudolf Kawalla

In the presented article, a differential thermal analysis was carried out and the temperatures of thermal effects were established that arise during the reduction of neodymium from a technological salt mixture KCl–NaCl–CaCl2–NdF3 with a magnesium–zinc alloy. The results of experimental studies on the reduction of neodymium from a fluoride–chloride melt in a shaft electric furnace at temperatures of 550, 600, 650, 700 °C are presented. In order to increase the degree of extraction of neodymium into the Mg–Zn–Nd master alloy, the study of the influence of technological parameters on the degree of extraction of neodymium was carried out. It was experimentally proven that when zinc is added to a reducing agent (magnesium), the degree of extraction of neodymium into the master alloy is 99.5–99.7%. The structure of the obtained master alloy samples, characterized by a uniform distribution of ternary intermetallic compounds (Mg3,4NdZn7) in the volume of a double magnesium–zinc eutectic, was studied by optical and electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document