Information content and efficiency of television methods for measuring geometric parameters of complex shapes

2011 ◽  
Vol 54 (4) ◽  
pp. 447-453
Author(s):  
V. P. Shevchuk
2019 ◽  
Vol 45 (2) ◽  
pp. 85-91
Author(s):  
Kostyantyn Burak ◽  
Vitaliy Kovtun ◽  
Mary Nychvyd

The purpose of this work is to increase the accuracy, quality and information content of geodetic surveys of vertical steel tanks by using modern geodetic equipment and creating algorithms for data processing of these observations. Method. In order to increase the information content of data for straightening, it is proposed to calculate the geometric parameters of vertical steel tanks not only in places where data are directly obtained through instrumental observations, but also at any point of the 3D surface of the tank. The paper describes an algorithm for creating a 3D surface of a tank by bicubic spline interpolation (BSI). Results on the basis of the conducted research, it was established that the developed algorithm could be used and the 3D-surface spatial coordinates were determined. The method of determining the geometric parameters of vertical steel tanks by using BSI is improved. Scientific novelty and practical significance. Bicubic spline interpolation (BSI) was used for the first time. It greatly increases the accuracy and informality of the results of the control. The practical significance is confirmed by the control of the geometric parameters of a vertical cylindrical steel tank with a nominal capacity of 75.000 m3 with a floating roof and a double wall of the LODS “Brody” company.


2016 ◽  
Vol 59 (1) ◽  
pp. 63-68 ◽  
Author(s):  
B. V. Skvortsov ◽  
A. N. Malysheva-Stroykova ◽  
A. V. Chernykh

2021 ◽  
Vol 279 ◽  
pp. 02001
Author(s):  
Vladimir Semenov

The article describes a device based on the holographic method for measuring the parameters of dispersed aerosols. In the proposed device, the measured particle is irradiated with two beams perpendicular to the main radiation axis, while the resulting holographic image in each of the projections gives an increased amount of information (in contrast to existing solutions) about the parameters of the particles. The information obtained is processed layer by layer using digital holography methods to form a volumetric representation of the aerosol under study, which significantly increases the information content of measurements in comparison with existing devices. Methods and algorithms for layer-by-layer processing of the obtained holographic images are described, which make it possible to reconstruct the parameters of aerosols of complex shapes. The design of the device and an algorithm for layer-by-layer reconstruction of aerosol images are proposed.


Author(s):  
R.A. Ploc ◽  
G.H. Keech

An unambiguous analysis of transmission electron diffraction effects requires two samplings of the reciprocal lattice (RL). However, extracting definitive information from the patterns is difficult even for a general orthorhombic case. The usual procedure has been to deduce the approximate variables controlling the formation of the patterns from qualitative observations. Our present purpose is to illustrate two applications of a computer programme written for the analysis of transmission, selected area diffraction (SAD) patterns; the studies of RL spot shapes and epitaxy.When a specimen contains fine structure the RL spots become complex shapes with extensions in one or more directions. If the number and directions of these extensions can be estimated from an SAD pattern the exact spot shape can be determined by a series of refinements of the computer input data.


Author(s):  
T. L. Hayes

Biomedical applications of the scanning electron microscope (SEM) have increased in number quite rapidly over the last several years. Studies have been made of cells, whole mount tissue, sectioned tissue, particles, human chromosomes, microorganisms, dental enamel and skeletal material. Many of the advantages of using this instrument for such investigations come from its ability to produce images that are high in information content. Information about the chemical make-up of the specimen, its electrical properties and its three dimensional architecture all may be represented in such images. Since the biological system is distinctive in its chemistry and often spatially scaled to the resolving power of the SEM, these images are particularly useful in biomedical research.In any form of microscopy there are two parameters that together determine the usefulness of the image. One parameter is the size of the volume being studied or resolving power of the instrument and the other is the amount of information about this volume that is displayed in the image. Both parameters are important in describing the performance of a microscope. The light microscope image, for example, is rich in information content (chemical, spatial, living specimen, etc.) but is very limited in resolving power.


Author(s):  
J.M. Schwartz ◽  
L.F. Francis ◽  
L.D. Schmidt ◽  
P.S. Schabes-Retchkiman

Ceramic thin films and coatings are of interest for electrical, optical, magnetic and thermal barrier applications. Critical for improved properties in thin films is the development of specific microstructures during processing. To this end, the sol-gel method is advantageous as a versatile processing route. The sol-gel process involves depositing a solution containing metalorganic or colloidal ceramic precursors onto a substrate and heating the deposited layer to form a crystalline or non-crystalline ceramic coating. This route has several advantages, including the ability to create tailored microstructures and properties, to coat large or small areas, simple or complex shapes, and to more easily prepare multicomponent ceramics. Sol-gel derived coatings are amorphous in the as-deposited state and develop their crystalline structure and microstructure during heat-treatment. We are particularly interested in studying the amorphous to crystalline transformation, because many key features of the microstructure such as grain size and grain size distribution may be linked to this transformation.


Author(s):  
Dean A. Handley ◽  
Lanping A. Sung ◽  
Shu Chien

RBC agglutination by lectins represents an interactive balance between the attractive (bridging) force due to lectin binding on cell surfaces and disaggregating forces, such as membrane stiffness and electrostatic charge repulsion (1). During agglutination, critical geometric parameters of cell contour and intercellular distance reflect the magnitude of these interactive forces and the size of the bridging macromolecule (2). Valid ultrastructural measurements of these geometric parameters from agglutinated RBC's require preservation with minimal cell distortion. As chemical fixation may adversely influence RBC geometric properties (3), we used chemical fixation and cryofixation (rapid freezing followed by freeze-substitution) as a comparative approach to examine these parameters from RBC agglutinated with Ulex I lectin.


2020 ◽  
pp. 51-58
Author(s):  
Aleksandr I. Kazmin ◽  
Pavel A. Fedjunin

One of the most important diagnostic problems multilayer dielectric materials and coatings is the development of methods for quantitative interpretation of the checkout results their electrophysical and geometric parameters. The results of a study of the potential informativeness of the multi-frequency radio wave method of surface electromagnetic waves during reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings are presented. The simulation model is presented that makes it possible to evaluate of the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric coatings. The model takes into account the values of the electrophysical and geometric parameters of the coating, the noise level in the measurement data and the measurement bandwidth. The results of simulation and experimental investigations of reconstruction of the structure of relative permittivitties and thicknesses of single-layer and double-layer dielectric coatings with different thicknesses, with different values of the standard deviation (RMS) of the noise level in the measured attenuation coefficients of the surface slow electromagnetic wave are presented. Coatings based on the following materials were investigated: polymethyl methacrylate, F-4D PTFE, RO3010. The accuracy of reconstruction of the electrophysical parameters of the layers decreases with an increase in the number of evaluated parameters and an increase in the noise level. The accuracy of the estimates of the electrophysical parameters of the layers also decreases with a decrease in their relative permittivity and thickness. The results of experimental studies confirm the adequacy of the developed simulation model. The presented model allows for a specific measuring complex that implements the multi-frequency radio wave method of surface electromagnetic waves, to quantify the potential possibilities for the accuracy of reconstruction of the electrophysical and geometric parameters of multilayer dielectric materials and coatings. Experimental investigations and simulation results of a multilayer dielectric coating demonstrated the theoretical capabilities gained relative error permittivity and thickness of the individual layers with relative error not greater than 10 %, with a measurement bandwidth of 1 GHz and RMS of noise level 0,003–0,004.


Sign in / Sign up

Export Citation Format

Share Document