GET 59–2016, State Primary Standard of Unit of Thermal Conductivity and Unit of Thermal Resistance

2018 ◽  
Vol 61 (4) ◽  
pp. 321-326
Author(s):  
N. A. Sokolov ◽  
A. N. Sokolov ◽  
N. V. Churilina
2020 ◽  
pp. 3-7
Author(s):  
Vladlen Ya. Shifrin ◽  
Denis I. Belyakov ◽  
Alexander E. Shilov ◽  
Denis D. Kosenko

The results of works aimed at increasing the level of uniformity of measurements of the magnetic induction of a constant field – the basic value in the field of magnetic measurements. A set of equipment for reproducing a unit of magnetic induction of a constant field in the range of 1–25 mT was created and described. The inclusion of this complex in the State primary standard of units of magnetic induction, magnetic flux, magnetic moment and magnetic induction gradient GET 12-2011 will ensure the reproduction and direct transmission of the unit of permanent magnetic induction in the ranges of not only weak (10–3–1 mT), but medium (1–25 mT) and strong (0.025–1 T) magnetic fields. A quantum cesium magnetometer based on the resolved structure of cesium atoms was created to transmit the unit of magnetic induction to the region of medium fields. The procedure for calculating the frequency conversion coefficients to magnetic induction of the created quantum cesium magnetometer is described. The uncertainty budget for reproducing a unit of magnetic induction of a constant field using the created complex is estimated.


2020 ◽  
pp. 174425912098003
Author(s):  
Travis V Moore ◽  
Cynthia A. Cruickshank ◽  
Ian Beausoleil-Morrison ◽  
Michael Lacasse

The purpose of this paper is to investigate the potential for calculation methods to determine the thermal resistance of a wall system containing vacuum insulation panels (VIPs) that has been experimentally characterised using a guarded hot box (GHB) apparatus. The VIPs used in the wall assembly have not been characterised separately to the wall assembly, and therefore exact knowledge of the thermal performance of the VIP including edge effect is not known. The calculations and simulations are completed using methods found in literature as well as manufacturer published values for the VIPs to determine the potential for calculation and simulation methods to predict the thermal resistance of the wall assembly without the exact characterisation of the VIP edge effect. The results demonstrate that disregarding the effect of VIP thermal bridges results in overestimating the thermal resistance of the wall assembly in all calculation and simulation methods, ranging from overestimates of 21% to 58%. Accounting for the VIP thermal bridges using the manufacturer advertised effective thermal conductivity of the VIPs resulted in three methods predicting the thermal resistance of the wall assembly within the uncertainty of the GHB results: the isothermal planes method, modified zone method and the 3D simulation. Of these methods only the 3D simulation can be considered a potential valid method for energy code compliance, as the isothermal planes method requires too drastic an assumption to be valid and the modified zone method requires extrapolating the zone factor beyond values which have been validated. The results of this work demonstrate that 3D simulations do show potential for use in lieu of guarded hot box testing for predicting the thermal resistance of wall assemblies containing both VIPs and steel studs. However, knowledge of the VIP effective thermal conductivity is imperative to achieve reasonable results.


2005 ◽  
Vol 46 (2) ◽  
pp. 148-151 ◽  
Author(s):  
Yibin Xu ◽  
Yoshihisa Tanaka ◽  
Masaharu Murata ◽  
Kazushige Kamihira ◽  
Yukihiro Isoda ◽  
...  

2007 ◽  
Vol 50 (7) ◽  
pp. 695-699 ◽  
Author(s):  
V. S. Ivanov ◽  
A. F. Kotyuk ◽  
A. A. Liberman ◽  
S. A. Moskalyuk ◽  
M. V. Ulanovskii

Sign in / Sign up

Export Citation Format

Share Document