Measuring Isobaric Heat Capacity of Fluids in the Critical Region by Continuous-Flow Adiabatic Calorimetry Method

Author(s):  
A. A. Gerasimov ◽  
B. A. Grigoriev ◽  
M. A. Kuznetsov ◽  
A. D. Kozlov
2021 ◽  
pp. 30-37
Author(s):  
Anatoly А. Gerasimov ◽  
Boris A. Grigoriev ◽  
Mikhail A. Kuznetsov ◽  
Alexander D. Kozlov

With regard to the problem of refining the fundamental equations of state of hydrocarbons, the methodological and design features of the experimental measurement of the isobaric heat capacity in the critical region by the method of a flow adiabatic calorimeter are considered. The pressure measurement system has been improved by introducing a differential manometer into the measuring circuit, which made it possible not only to increase the accuracy of pressure determination, but also to implement a universal scheme of calorimetric experiment. The use of a universal scheme of the calorimetric experiment allows one to determine two values of the isobaric heat capacity at pressures that differ by the value of the pressure loss in the calorimeter. Such an approach in the critical region is relevant, since it makes it possible to quite simply and reliably determine the value of the derivative of the heat capacity with respect to pressure, which is used to estimate not only the error in assigning the value of heat capacity to pressure, but also the equilibrium conditions of the experiment in a flow-through calorimeter. The technique of determining and making a correction for the inhomogeneity of the supply wires of the differential thermocouple, for the throttling of the flow of matter in the calorimeter is considered. Correct relations are obtained for determining the average temperature of the measurement experiment for various methods of measuring the temperature and temperature difference in a flow-through calorimeter. The results of experimental measurements of the isobaric heat capacity of n-pentane in the critical region, obtained using the universal scheme of the calorimetric experiment, for n-pentane were measured on an isobar of 3.400 MPa (critical pressure 3.355 MPa), which is the closest to the critical point at practice of flow calorimetry


1988 ◽  
Vol 66 (4) ◽  
pp. 549-552 ◽  
Author(s):  
Jane E. Callanan ◽  
Ron D. Weir ◽  
Edgar F. Westrum Jr.

We have measured the heat capacity of the fast ion conductor PbSnF4 at 10.3 < T < 352 K by adiabatic calorimetry. Our results show anomalous values in the Cp,m in the region 300 < T < 352 K. These are associated with the α–β crystallographic transition reported at 353 K. Because the upper temperature limit of our cryostat is around 354 K, it was impossible to follow the phase transition to completion. A more subtle anomaly in the Cp,m was detected between 130 and 160 K. Standard molar thermodynamic functions are presented at selected temperatures from 5 to 350 K.


1999 ◽  
Vol 556 ◽  
Author(s):  
Robert L. Putnam ◽  
Alexandra Navrotsky ◽  
Brian F. Woodfield ◽  
Jennifer L. Shapiro ◽  
Rebecca Stevens ◽  
...  

AbstractThe formation enthalpy, - 3752.3 ± 4.7 kJ·mol−1, of Hf-zirconolite, CaHfTi2O7, was obtained using high temperature oxide-melt solution calorimetry. Combined with heat capacity data obtained using low temperature adiabatic calorimetry we report the heat capacity (Cp) and the standard molar formation energetics (ΔH°f. elements, Δ S°T, and ΔG°f. elements)for Hf-zirconolite from T = 298.15 K to T = 1500 K. Comparison of Hf-zirconolite with Zr-zirconolite is made.


2018 ◽  
Vol 63 (10) ◽  
pp. 3727-3732
Author(s):  
Atsushi Matsuguchi ◽  
Noboru Kagawa ◽  
Koichi Watanabe

2020 ◽  
Vol 683 ◽  
pp. 178464
Author(s):  
Yi-jian He ◽  
Lin-feng He ◽  
Shu-peng Zheng ◽  
Guang-ming Chen

Sign in / Sign up

Export Citation Format

Share Document