Development of a large number of SSR and InDel markers and construction of a high-density genetic map based on a RIL population of pepper (Capsicum annuum L.)

2016 ◽  
Vol 36 (7) ◽  
Author(s):  
Xiao-fen Zhang ◽  
Hong-he Sun ◽  
Yong Xu ◽  
Bin Chen ◽  
Shuan-cang Yu ◽  
...  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiao-fen Zhang ◽  
Guo-yun Wang ◽  
Ting-ting Dong ◽  
Bin Chen ◽  
He-shan Du ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (5) ◽  
pp. 92
Author(s):  
Yi-Fei Li ◽  
Shi-Cai Zhang ◽  
Xiao-Miao Yang ◽  
Chun-Ping Wang ◽  
Qi-Zhong Huang ◽  
...  

Pepper (Capsicum annuum L.) is an economically significant global crop and condiment. Its yield can be severely reduced by the oomycete plant pathogen, Phytophthora capsici (P. capsici). Here, a high-density genetic map was created with a mapping panel of F2 populations obtained from 150 individuals of parental lines PI201234 and 1287 and specific-locus amplified fragment sequencing (SLAF) that was then utilized to identify loci that are related to resistance to P. capsici. The sequencing depth of the genetic map was 108.74-fold for the male parent, 126.25-fold for the female parent, and 22.73-fold for the offspring. A high-resolution genetic map consisting of 5565 markers and 12 linkage groups was generated for pepper, covering 1535.69 cM and an average marker distance of 0.28 cM. One major quantitative trait locus (QTL) for the P. capsici resistance (CQPc5.1) was identified on Chr05 that explained the observed 11.758% phenotypic variance. A total of 23 candidate genes located within the QTL CQPc5.1 interval were identified, which included the candidate gene Capana05g000595 that encodes the RPP8-like protein as well as two candidate genes Capana05g000596 and Capana05g000597 that encodes a RPP13-like protein. Quantitative reverse-transcription PCR (qRT-PCR) revealed higher expression levels of Capana05g000595, Capana05g000596, and Capana05g000597 in P. capsici resistance accessions, suggesting their association with P. capsici resistance in pepper.


2017 ◽  
Vol 8 ◽  
Author(s):  
Elise A. R. Serin ◽  
L. B. Snoek ◽  
Harm Nijveen ◽  
Leo A. J. Willems ◽  
Jose M. Jiménez-Gómez ◽  
...  

2020 ◽  
Author(s):  
Junchao Liang ◽  
Yanying Ye ◽  
Xiaowen Yan ◽  
Tingxian Yan ◽  
Yueliang Rao ◽  
...  

Abstract BackgroundImprovement in sesame (Sesamum indicum L.) drought tolerance at seedling stage is important for yield stability. Genetic approaches combing with conventional breeding is the most effective way to develop drought-tolerant cultivars. So far, only a few studies have been reported to reveal gene/ quantitative trait loci (QTL) controlling drought tolerance in sesame. To identify the genomic regions associated with drought tolerance, we constructed a high-density genetic map using a recombinant inbred line (RIL) population through whole genome re-sequencing (WGRS) technique. QTLs contributing to three seedling traits were identified under both non-stress and water stress conditions.ResultsThree drought tolerance related traits and their relative values (the ratio of value under stress to value under control condition), including seedling weight (SW), shoot length (SL) and root length (RL), were evaluated under control and PEG-induced osmotic conditions at seedling stage in a RIL population derived from cross of Zhushanbai (ZSB) and Jinhuangma (JHM). Significant variation and high broad sense heritability were observed for all traits except SW under stress condition in the population. With this population, a high-density linkage map with 1354 bin markers was constructed through WGRS strategy. Composite interval mapping analysis was performed for all the traits as well as their relative phenotypic data. A total of 34 QTLs were detected for these traits under both conditions and their relative values, and 13 stable QTLs associated with seven traits were revealed in two independent experiments, explaining on average, 4.95-16.26% of phenotypic variation for each QTL. Four of them contributed more than 10% of phenotypic variation. One region on chromosome 12 contained two major QTLs related to RL under osmotic condition and relative RL. Seven candidate genes underlying major QTLs for drought tolerance were identified according to gene descriptions and variations between parents.ConclusionThe current study reports the first QTL mapping of drought tolerance related traits through a RIL population and first QTL detection of root related trait (root length) in sesame. These findings will provide new genetic resources for molecular improvement of drought tolerance and candidate gene identification in sesame.


2020 ◽  
Vol 170 (4) ◽  
pp. 519-527
Author(s):  
Victoria Florencio‐Ortiz ◽  
Ondřej Novák ◽  
José L. Casas

2019 ◽  
Vol 133 (3) ◽  
pp. 889-902 ◽  
Author(s):  
Jiaowen Cheng ◽  
Yijian Chen ◽  
Yafei Hu ◽  
Ziyan Zhou ◽  
Fang Hu ◽  
...  

2020 ◽  
Author(s):  
Junchao Liang ◽  
Yanying Ye ◽  
Xiaowen Yan ◽  
Tingxian Yan ◽  
Yueliang Rao ◽  
...  

Abstract BackgroundImprovement in sesame (Sesamum indicum L.) drought tolerance at seedling stage is important for yield stability. Genetic approaches combing with conventional breeding is the most effective way to develop drought-tolerant cultivars. So far, very few studies have been reported to reveal gene/ quantitative trait loci (QTL) controlling drought tolerance in sesame. To identify the genomic regions associated with drought tolerance, we constructed a high-density genetic map using a recombinant inbred line (RIL) population through whole genome re-sequencing (WGRS) technique. QTLs contributing to three seedling traits were identified under both non-stress and water stress conditions.ResultsThree drought tolerance related traits and their relative values (the ratio of value under stress to value under control condition), including seedling weight (SW), shoot length (SL) and root length (RL), were evaluated under control and PEG-induced osmotic conditions at seedling stage in a RIL population derived from cross of Zhushanbai (ZSB) and Jinhuangma (JHM). Significant variation and high broad sense heritability were observed for all traits except SW under stress condition in the population. With this population, a high-density linkage map with 1354 bin markers was constructed through WGRS strategy. Composite interval mapping analysis was performed for all the traits as well as their relative phenotypic data. A total of 34 QTLs were detected for these three traits under both conditions and their relative values, and 13 stable QTLs associated with seven traits could be revealed in two independent experiments, explaining on average, 4.95-16.26% of phenotypic variation for each QTL. Four of them contributed more than 10% of phenotypic variation. Root length related QTLs were first identified in sesame. One region on chromosome 12 contained two major QTLs related to RL under osmotic condition and relative RL. ConclusionThe current study reports the first QTL mapping of drought tolerance related traits through a RIL population and first QTL detection of root related trait (root length) in sesame. These findings will provide new genetic resources for molecular improvement of drought tolerance and candidate gene identification in sesame.


Sign in / Sign up

Export Citation Format

Share Document