Adenovirus conducted connective tissue growth factor on extracellular matrix in trabecular meshwork and its role on aqueous humor outflow facility

2013 ◽  
Vol 40 (11) ◽  
pp. 6091-6096 ◽  
Author(s):  
Ying Su ◽  
Jingli Cheng ◽  
Hongtao Liu ◽  
Feng Wang ◽  
Shiguang Zhao
2006 ◽  
Vol 290 (1) ◽  
pp. L153-L161 ◽  
Author(s):  
Janette K. Burgess ◽  
Qi Ge ◽  
Maree H. Poniris ◽  
Sarah Boustany ◽  
Stephen M. Twigg ◽  
...  

Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-β on the release of connective tissue growth factor and vascular endothelial growth factor from human airway smooth muscle cells derived from asthmatic and nonasthmatic patients. In addition we studied the immunohistochemical localization of these cytokines in the extracellular matrix after stimulating bronchial rings with transforming growth factor-β. Connective tissue growth factor and vascular endothelial growth factor were released from both cell types and colocalized in the surrounding extracellular matrix. Prostaglandin E2 inhibited the increase in connective tissue growth factor mRNA but augmented the release of vascular endothelial growth factor. Matrix metalloproteinase-2 decreased the amount of connective tissue growth factor and vascular endothelial growth factor, but not fibronectin deposited in the extracellular matrix. This report provides the first evidence that connective tissue growth factor may anchor vascular endothelial growth factor to the extracellular matrix and that this deposition is decreased by matrix metalloproteinase-2 and prostaglandin E2. This relationship has the potential to contribute to the changes that constitute airway remodeling, therefore providing a novel focus for therapeutic intervention in asthma.


2012 ◽  
Vol 180 (6) ◽  
pp. 2386-2403 ◽  
Author(s):  
Benjamin Junglas ◽  
Sabrina Kuespert ◽  
Amin A. Seleem ◽  
Tobias Struller ◽  
Sabrina Ullmann ◽  
...  

2009 ◽  
Vol 420 (3) ◽  
pp. 413-420 ◽  
Author(s):  
Eriko Aoyama ◽  
Takako Hattori ◽  
Mitsuhiro Hoshijima ◽  
Daisuke Araki ◽  
Takashi Nishida ◽  
...  

CCN2/CTGF (CCN family 2/connective tissue growth factor) is a multi-cellular protein with a broad range of activities. It modulates many cellular functions, including proliferation, migration, adhesion and extracellular matrix production, and it is thus involved in many biological and pathological processes. In particular, CCN2/CTGF is essential for normal skeletal development. To identify CCN2/CTGF-interactive proteins capable of modulating its action in cartilage, we carried out a yeast two-hybrid screening using CCN2/CTGF peptide as a bait and a cDNA library from a chondrocytic cell line, HCS-2/8. In the present paper, we report the identification of aggrecan, which is a major proteoglycan of the extracellular matrix in cartilage, as a CCN2/CTGF-binding protein. Among the four domains of CCN2/CTGF, the IGFBP [IGF (insulin-like growth factor)-binding protein-like] and/or VWC (von Willebrand factor type C) domains had a direct interaction with aggrecan in a yeast two-hybrid assay. The results of a solid-phase-binding assay using aggrecan-coated plates also showed binding to recombinant CCN2/CTGF in a dose-dependent manner. rIGFBP (recombinant IGFBP) and rVWC (recombinant VWC) module peptides had stronger binding to aggrecan compared with rTSP1 (recombinant thrombospondin type 1 repeat) and rCT (recombinant C-terminal cystine knot) module peptides. SPR (surface plasmon resonance) analysis showed the direct interaction between the CCN2/CTGF and aggrecan, and ectopically overexpressed CCN2/CTGF and AgG3 (G3 domain of aggrecan) confirmed their binding In vivo. Indirect immunofluorescence analysis indicated that CCN2/CTGF was extracellularly co-localized with aggrecan on HCS-2/8 cells. The rIGFBP–rVWC peptide effectively enhanced the production and release of aggrecan compared with the rTSP–rCT peptide in chondrocytes. These results indicate that CCN2/CTGF binds to aggrecan through its N-terminal IGFBP and VWC modules, and this binding may be related to the CCN2/CTGF-enhanced production and secretion of aggrecan by chondrocytes.


2020 ◽  
Author(s):  
Toyoshi Yanagihara ◽  
Sy Giin Chong ◽  
Mahsa Gholiof ◽  
Kenneth E. Lipson ◽  
Quan Zhou ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive and excessive accumulation of myofibroblasts and extracellular matrix in the lung. Connective-tissue growth factor (CTGF) is known to exacerbate pulmonary fibrosis in radiation-induced lung fibrosis, and in this study, we show the upregulation of CTGF from a rat lung fibrosis model induced by adenovirus vector encoding active TGF-β1 (AdTGF-β1), and also in patients with IPF. The expression of CTGF was upregulated in vascular smooth muscle cells cultured from fibrotic lungs on days 7 or 14 as well as endothelial cells sorted from fibrotic lungs on day 14 or 28 respectively. These findings suggest the role of different cells in maintaining the fibrotic phenotype during fibrogenesis. Treatment of fibroblasts with recombinant CTGF along with TGF-β increases pro-fibrotic markers in fibroblasts, confirming the synergistic effect of recombinant CTGF with TGF-β in inducing pulmonary fibrosis. Also, fibrotic extracellular matrix upregulated the expression of CTGF, as compared to normal extracellular matrix, suggesting that not only profibrotic mediators but also a profibrotic environment contributes to fibrogenesis. We also showed that pamrevlumab, a CTGF inhibitory antibody, partially attenuates fibrosis in the model. These results suggest that pamrevlumab could be an option for the treatment of pulmonary fibrosis.


Sign in / Sign up

Export Citation Format

Share Document