Connective-Tissue Growth Factor (CTGF/CCN2) Contributes to TGF-β1-Induced Lung Fibrosis

2020 ◽  
Author(s):  
Toyoshi Yanagihara ◽  
Sy Giin Chong ◽  
Mahsa Gholiof ◽  
Kenneth E. Lipson ◽  
Quan Zhou ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive and excessive accumulation of myofibroblasts and extracellular matrix in the lung. Connective-tissue growth factor (CTGF) is known to exacerbate pulmonary fibrosis in radiation-induced lung fibrosis, and in this study, we show the upregulation of CTGF from a rat lung fibrosis model induced by adenovirus vector encoding active TGF-β1 (AdTGF-β1), and also in patients with IPF. The expression of CTGF was upregulated in vascular smooth muscle cells cultured from fibrotic lungs on days 7 or 14 as well as endothelial cells sorted from fibrotic lungs on day 14 or 28 respectively. These findings suggest the role of different cells in maintaining the fibrotic phenotype during fibrogenesis. Treatment of fibroblasts with recombinant CTGF along with TGF-β increases pro-fibrotic markers in fibroblasts, confirming the synergistic effect of recombinant CTGF with TGF-β in inducing pulmonary fibrosis. Also, fibrotic extracellular matrix upregulated the expression of CTGF, as compared to normal extracellular matrix, suggesting that not only profibrotic mediators but also a profibrotic environment contributes to fibrogenesis. We also showed that pamrevlumab, a CTGF inhibitory antibody, partially attenuates fibrosis in the model. These results suggest that pamrevlumab could be an option for the treatment of pulmonary fibrosis.

Author(s):  
Toyoshi Yanagihara ◽  
Kazuya Tsubouchi ◽  
Mahsa Gholiof ◽  
Sy Giin Chong ◽  
Kenneth E. Lipson ◽  
...  

2006 ◽  
Vol 290 (1) ◽  
pp. L153-L161 ◽  
Author(s):  
Janette K. Burgess ◽  
Qi Ge ◽  
Maree H. Poniris ◽  
Sarah Boustany ◽  
Stephen M. Twigg ◽  
...  

Airway remodeling describes the structural changes that occur in the asthmatic airway that include airway smooth muscle hyperplasia, increases in vascularity due to angiogenesis, and thickening of the basement membrane. Our aim in this study was to examine the effect of transforming growth factor-β on the release of connective tissue growth factor and vascular endothelial growth factor from human airway smooth muscle cells derived from asthmatic and nonasthmatic patients. In addition we studied the immunohistochemical localization of these cytokines in the extracellular matrix after stimulating bronchial rings with transforming growth factor-β. Connective tissue growth factor and vascular endothelial growth factor were released from both cell types and colocalized in the surrounding extracellular matrix. Prostaglandin E2 inhibited the increase in connective tissue growth factor mRNA but augmented the release of vascular endothelial growth factor. Matrix metalloproteinase-2 decreased the amount of connective tissue growth factor and vascular endothelial growth factor, but not fibronectin deposited in the extracellular matrix. This report provides the first evidence that connective tissue growth factor may anchor vascular endothelial growth factor to the extracellular matrix and that this deposition is decreased by matrix metalloproteinase-2 and prostaglandin E2. This relationship has the potential to contribute to the changes that constitute airway remodeling, therefore providing a novel focus for therapeutic intervention in asthma.


1998 ◽  
Vol 275 (2) ◽  
pp. L365-L371 ◽  
Author(s):  
Joseph A. Lasky ◽  
Luis A. Ortiz ◽  
Boihoang Tonthat ◽  
Gary W. Hoyle ◽  
Miriam Corti ◽  
...  

Connective tissue growth factor (CTGF) is a newly described 38-kDa peptide mitogen for fibroblasts and a promoter of connective tissue deposition in the skin. The CTGF gene promotor contains a transforming growth factor-β1 (TGF-β1) response element. Because TGF-β1 expression is upregulated in several models of fibroproliferative lung disease, we asked whether CTGF is also upregulated in a murine lung fibrosis model and whether CTGF could mediate some of the fibrogenic effects associated with TGF-β1. A portion of the rat CTGF gene was cloned and used to show that primary isolates of both murine and human lung fibroblasts express CTGF mRNA in vitro. There was a greater than twofold increase in CTGF expression in both human and murine lung fibroblasts 2, 4, and 24 h after the addition of TGF-β1 in vitro. A bleomycin-sensitive mouse strain (C57BL/6) and a bleomycin-resistant mouse strain (BALB/c) were given bleomycin, a known lung fibrogenic agent. CTGF mRNA expression was upregulated in the sensitive, but not in the resistant, mouse strain after administration of bleomycin. In vivo differences in the CTGF expression between the two mouse strains were not due to an inherent inability of BALB/c lung fibroblasts to respond to TGF-β1 because fibroblasts from untreated BALB/c mouse lung upregulated their CTGF message when treated with TGF-β1 in vitro. These data demonstrate that CTGF is expressed in lung fibroblasts and may play a role in the pathogenesis of lung fibrosis.


Sign in / Sign up

Export Citation Format

Share Document