In vitro cytotoxic effect of Trastuzumab in combination with Pertuzumab in breast cancer cells is improved by interleukin-2 activated NK cells

2019 ◽  
Vol 46 (6) ◽  
pp. 6205-6213 ◽  
Author(s):  
Amir Asgari ◽  
Sedigheh Sharifzadeh ◽  
Abbas Ghaderi ◽  
Ahmad Hosseini ◽  
Amin Ramezani
Homeopathy ◽  
2020 ◽  
Vol 109 (04) ◽  
pp. 198-206
Author(s):  
Sabiha Khan ◽  
Debadatta Nayak ◽  
Anil Khurana ◽  
Raj Kumar Manchanda ◽  
Chanderdeep Tandon ◽  
...  

Abstract Background Breast cancer is the second leading cause of cancer-related deaths in women. Conventional treatment such as chemotherapy, hormonal therapy and radiotherapy has decreased the mortality rate among cancer patients but has also revealed long-term side effects. Drug resistance and toxicity to normal cells compound the problems associated with the use of modern medicines. Hence, complementary or alternative treatment options are being explored. The current study, using different homeopathic potencies of Hydrastis canadensis, was conducted to distinguish between any effects they might have on hormone-dependent and independent breast cancer. Materials and Methods The cytotoxic effect of homeopathic medicine Hydrastis on hormone-dependent (MCF 7) and hormone-independent (MDA-MB-468) breast cancer cells was assessed using viability and colony-forming assays after 48 or 72 hours of treatment. Flow cytometry-based Annexin V-PI (propidium iodide), caspase 3 and cell cycle analysis was performed following treatment of cells with mother tincture or various potencies of Hydrastis (1C, 2C, 30C, 200C). Results Different potencies of Hydrastis displayed selective cytotoxic effects against MCF 7 cells, but only marginal effects against MDA-MB-468. The maximum cytotoxicity was established in the case of 1C following 72 hours of treatment. Treatment of breast cancer cells revealed an increase in the G0/G1 cell population, along with an increase in the caspase 3 levels and induction of apoptosis. Conclusion Hydrastis may have a selective cytotoxic effect against hormone-dependent breast cancer MCF 7 cells, leading to cell cycle arrest in the G0/G1 phase, which could be the plausible reason for the induction of apoptosis. The results need to be validated in vivo.


2019 ◽  
Vol 8 (1) ◽  
pp. 104-110
Author(s):  
Yu Huang ◽  
Bensi Zhang ◽  
Yanjiao Li ◽  
Zhuang Li ◽  
Qin Zhang ◽  
...  

2020 ◽  
Vol 4 (1) ◽  
pp. 1-7
Author(s):  
Bukola Oseni ◽  
Chukwuemeka Azubuike ◽  
Omotunde Okubanjo ◽  
Cecilia Igwilo ◽  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
S. H. Shahruzaman ◽  
F. Z. Yusof ◽  
S. Maniam ◽  
S. Fakurazi ◽  
S. Maniam

Abstract Background Adaptive metabolic response towards a low oxygen environment is essential to maintain rapid tumour proliferation and progression. The vascular network that surrounds the tumour develops an intermittent hypoxic condition and stimulates hypoxia-inducing factors. Baeckea frutescens is used in traditional medicine and known to possess antibacterial and cytoprotective properties. In this study, the cytotoxic effect of B. frutescens leaves and branches extracts against hypoxic human breast cancer (MCF-7) was investigated. Method The extracts were prepared using Soxhlet apparatus for ethanol and hexane extracts while the water extracts were freeze-dried. In vitro cytotoxic activities of B. frutescens extracts of various concentrations (20 to 160 μg/mL) at 24, 48, and 72 hours time points were studied using MTT in chemically induced hypoxic condition and in 3-dimensional in vitro cell culture system. An initial characterisation of B. frutescens extracts was carried out using Fourier-transform Infrared- Attenuated Total Reflection (FTIR-ATR) to determine the presence of functional groups. Results All leaf extracts except for water showed IC50 values ranging from 23 -158 μg/mL. Hexane extract showed the lowest IC50 value (23 μg/mL), indicating its potent cytotoxic activity. Among the branch extracts, only the 70% ethanolic extract (B70) showed an IC50 value. The hexane leaf extract tested on 3- dimensional cultured cells showed an IC50 value of 17.2 μg/mL. The FTIR-ATR spectroscopy analysis identified various characteristic peak values with different functional groups such as alcohol, alkenes, alkynes, carbonyl, aromatic rings, ethers, ester, and carboxylic acids. Interestingly, the FTIR-ATR spectra report a complex and unique profile of the hexane extract, which warrants further investigation. Conclusion Adaptation of tumour cells to hypoxia significantly contributes to the aggressiveness and chemoresistance of different tumours. The identification of B. frutescens and its possible role in eliminating breast cancer cells in hypoxic conditions defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.


The Nucleus ◽  
2019 ◽  
Vol 63 (2) ◽  
pp. 191-202 ◽  
Author(s):  
Arindam Bandyopadhyay ◽  
Bishnupada Roy ◽  
Pallab Shaw ◽  
Paritosh Mondal ◽  
Maloy Kr. Mondal ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Lisni Noraida Waruwu ◽  
Maria Bintang ◽  
Bambang Pontjo Priosoeryanto

Green tea (Camellia sinensis) is one of traditional plants that have the potential as an anticancer. The sample used in this research commercial green tea extract. The purpose of this study was to test the antiproliferation activity of green tea extract on breast cancer cell MCM-B2 in vitro. Green tea extract fractionated using three solvents, ie water, ethanol 70%, and n-hexane. Extract and fraction of green tea water have value Lethality Concentration 50 (LC50) more than 1000 ppm. The fraction of ethanol 70% and n-hexane had an LC50 value of 883.48 ppm and 600.56 ppm, respectively. The results of the phytochemical screening of green tea extract are flavonoids, tannins, and saponins, while the phytochemical screening results of n-hexane fraction are flavonoids and tannins. Antiproliferation activity was tested on breast cancer cells MCM-B2 and normal cells Vero by trypan blue staining method. The highest MCM-B2 cell inhibitory activity was achieved at a concentration of 13000 ppm green tea extract and 1000 ppm of n-hexane fraction, 59% and 59%, respectively. The extract and n-hexane fraction of green tea are not toxic to normal Vero cells characterized by not inhibiting normal cell proliferation. Keywords: antiproliferative, cancer cell MCM-B2, commercial green tea, cytotoxicity


Sign in / Sign up

Export Citation Format

Share Document