Operational Determination of Physical and Mechanical Properties of Cast Samples of High-Strength Iron by Means of a Magnetic-Mechanical Method

2017 ◽  
Vol 59 (5-6) ◽  
pp. 334-340
Author(s):  
Yu. K. Slyusarev ◽  
A. V. Braga ◽  
I. Yu. Slyusarev
2020 ◽  
Vol 30 (3) ◽  
pp. 305-310
Author(s):  
SS Bethe ◽  
MN Haque ◽  
MR Islam

This study was aimed to determination of appropriate dosage of selected chemical admixtures to reduce water cement ratio for mortar mix also to determine its effects on physical and mechanical properties of cement mortar. Amount of water used in concrete is very important for the physical and mechanical properties. Less amount of water increase the strength but reduce the workability. Water retarding admixture can reduce the water cement ratio with desired workability. In this experiment plasticizer (master pel 707) and super plasticizer (master polyheed 8632) was used. The used dosages of admixture were 0.5%, 1% and 1.5% according to cement weight. The test was done at 3 days, 7 days, 28 days and 91 days. 2.76″ cube mold was used for the work. The experiment was done to find the difference between with and without admixture used in mortar. Water used reduced with add of plasticizer and super plasticizer. In the experiment the workability of normal mortar and admixture used mortar remain same. The compressive strength is high for 1.5% super plasticizer used sample. So 1.5% super plasticizer is recommended for high strength. Progressive Agriculture 30 (3): 305-310, 2019


2021 ◽  
Vol 15 (1) ◽  
pp. 27-34
Author(s):  
Luqman Kareem Salati ◽  
Jacob Titilope Adeyemo

Purpose. To investigate the physical and mechanical properties of a granite outcrop for a quarry at Onikoko community in Oyo State, South-Western Nigeria. Methods. Samples of granite rock were collected from the outcrop for the laboratory determination of their physical and mechanical properties required for determining its suitability for construction and engineering purposes, and the desired properties were determined. Findings. Results from the tests conducted on the granite samples indicated the various values of physical and mechanical properties of the outcrop in the study area. The results obtained are found to be within the acceptable international standards. Hence, the granite outcrop is found to be suitable for establishing a quarry in the study area based on the results obtained. Originality.The results in this study have affirmed the fact that granite rocks must possess adequate physical and mechanical characteristics to make them suitable for construction and engineering purposes. The physico-mechanical properties of the granite outcrop evaluated in this study having their values within the international standards attest to high strength cha-racterization of the granite rock. The life span of the proposed quarry is established to be forty years, which is also an indication of rich mineralization of the area. Practical implications. Results of this study can be a useful source of information to potential investors and policy makers for the establishment of a quarry in the study area. Hence, government’s attention can be drawn to the needs of the host community for the provision of basic infrastructures. Keywords: granite outcrop, physical and mechanical properties, quarrying operation


2014 ◽  
Vol 62 (1) ◽  
pp. 129-137
Author(s):  
A. Sawicki ◽  
J. Mierczyński

Abstract A basic set of experiments for the determination of mechanical properties of sands is described. This includes the determination of basic physical and mechanical properties, as conventionally applied in soil mechanics, as well as some additional experiments, which provide further information on mechanical properties of granular soils. These additional experiments allow for determination of steady state and instability lines, stress-strain relations for isotropic loading and pure shearing, and simple cyclic shearing tests. Unconventional oedometric experiments are also presented. Necessary laboratory equipment is described, which includes a triaxial apparatus equipped with local strain gauges, an oedometer capable of measuring lateral stresses and a simple cyclic shearing apparatus. The above experiments provide additional information on soil’s properties, which is useful in studying the following phenomena: pre-failure deformations of sand including cyclic loading compaction, pore-pressure generation and liquefaction, both static and caused by cyclic loadings, the effect of sand initial anisotropy and various instabilities. An important feature of the experiments described is that they make it possible to determine the initial state of sand, defined as either contractive or dilative. Experimental results for the “Gdynia” model sand are shown.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2020 ◽  
Vol 12 (3) ◽  
pp. 454-460
Author(s):  
Yuri KLYKOV ◽  
◽  
Marina KHUDOYAN ◽  
Georgy KIBIZOV ◽  
◽  
...  

Introduction. Currently used grinding machines, among which drum mills are the most widely used, have a low efficiency, are bulky, are characterized by low specific productivity, significant consumption of steel for grinding bodies and lining, high noise level, and high energy consumption of the grinding process. The most promising devices of a new type that can effectively perform grinding operations at high technological rates are centrifugal mills. The centrifugal mill developed at SKGMI operates on the principle of self-grinding of pieces and particles of crushed mineral raw materials, when they collide and RUB in a mobile toroidal flow formed when the material moves between a rotating Cup-shaped rotor, a fixed body and the overlying layers of the crushed material. Grinding occurs due to the appearance of a gradient of particle velocities over the working body, due to their impact and, to a greater extent, abrasion. The tests of these mills for grinding various materials have shown high efficiency in operation, but until now, the issues of determining the physical and mechanical properties of the crushed material based on the establishment of the particle opening mechanism remain unresolved. The purpose of the tests. Determination of the physical and mechanical properties of the crushed material in a centrifugal mill based on the establishment of the particle opening mechanism. Test procedure. To solve this problem, a vertical centrifugal mill MC-600 with a rotor diameter of 600 mm was used. Tests of the centrifugal mill were carried out according to the following method. The speed of rotation of the rotor was 4.8 and 8.4 s-1, the height of the material column above the rotor was at the level of 250 and 350 mm; 6 radial ribs were installed in the rotor cavity of the mill. The time of each test was 4 hours. The tests were repeated 3–5 times for each mode of operation of the mill. Quartz was used as a reference material for determining the relative pulverizability coefficient. The research was carried out in the production conditions of the Izhevsk machinebuilding plant during the regeneration of spent molding quartz mixtures. Pieces of a liquid-glass mixture based on quartz sand with strength of 1.3 MPa and 4.25 MPa were used as the crushed material. The crushed material was dispersed according to the standard method for each hour of operation of the mill. Samples were taken in the size class -0.200 + 0.074 mm for their fractional analysis by size. Test result. 1. It was Found that the maximum productivity of a centrifugal mill when grinding pieces of material with a strength of 1.3 MPa was achieved with a loading weight of 90–100 kg, and with a strength of 4.25 MPa – 100–110 kg, which indicates the need to create an increased normal pressure of the layers of crushed material located above the mill rotor. It was found that the maximum productivity of a centrifugal mill when grinding pieces of material with a strength of 1.3 MPa and a rotor rotation frequency of 8.4 s-1 was 13.16 t/h, and when grinding pieces of material with a strength of 4.25 MPa – 10.0 t/h. 2. The Dependence of power consumption on the weight of the mill load and the rotor speed increases when the load weight is more than 100 kg. 3. The Highest fraction content of class -0.4 +0.16 mm is 72.14 %, and the content of class -0.074 mm is 3.9 %, i.e. there is no re-grinding of the source material. 4. The specific productivity of the centrifugal mill for the newly formed calculated size classes -0.074 mm and -0.200 mm was 1.28 t/h and 13.0 t/h, respectively. 5. Microscopic study of anshlifov showed that quartz grains in the crushed material mostly have a rounded shape, on average 90–95 % of the grains. In the initial material, about 90% of quartz joints with a binder, and in the crushed material, the number of joints does not exceed 3–5%. Thus, the degree of expansion of quartz reaches to 0.87. Conclusions. The paper presents the results of studies of a centrifugal mill in the conditions of the Izhevsk machinebuilding plant when grinding quartz-containing products. The physical and mechanical properties of the crushed material that significantly affect the efficiency of grinding are determined. The mechanism of the disclosure particles of quartz, which is primarily the mineral content of many ores and defined particle size obtained by grinding. At the same time, it was found that a large yield of thin classes significantly reduces the efficiency of further technology.


Sign in / Sign up

Export Citation Format

Share Document