scholarly journals Properties of High-Strength Flowable Mortar Reinforced with Palm Fibers

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.

2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2011 ◽  
Vol 57 (3) ◽  
pp. 249-260 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

Abstract This study investigates the use of steel fibers and hybrid composite with a total fibers content of 2% on the high strength flowing concrete and determines the density, compressive strength, static modulus of elasticity, flexural strength and toughness indices for the mixes. The results show that the inclusion of more than 0.5% of palm fibers in hybrid fibers mixes reduces the compressive strength. The hybrid fibers can be considered as a promising concept and the replacement of a portion of steel fibers with palm fibers can significantly reduce the density, enhance the flexural strength and toughness. The results also indicates that the use of hybrid fibers (1.5 steel fibers + 0.5% palm fibers) in specimens increases significantly the toughness indices and thus the use of hybrid fibers combinations in reinforced concrete would enhance their flexural toughness & rigidity and enhance their overall performances


Today’s world is always leads to development in technology as well as the economic growth though sometime these will affect the environment badly. That’s why world environmental commission coined the termed called sustainable development where development takes place without hampering the others’ needs. Concrete industry is rapidly growing industry in India which consumes lots of natural resources during the production of concrete. Here Stone dust is used as a sustainable material in place of sand partially. M25 grade of concrete has been chosen for the experiments. Different mechanical properties of concrete like compressive strength, Split tensile, flexural strength etc. and Microstructural features like SEM, EDX have been included in this study. Compressive Strength and flexural strength test results shown the increase in the strength. Sulphate Resistance Properties have been tested by curing the cubes in the MgSO4 solution and increase in weight has been observed. Similarities are found in the SEM pictures


2018 ◽  
Vol 4 (4) ◽  
pp. 54
Author(s):  
Iis Nurjamilah ◽  
Abinhot Sihotang

ABSTRAKKajian karakteristik beton memadat sendiri yang menggunakan serat ijuk merupakan sebuah kajian yang dilakukan untuk mengetahui pengaruh penambahan serat ijuk terhadap karakteristik beton memadat sendiri (SCC). Beton memadat sendiri yang menggunakan serat ijuk (PFSCC) didesain memiliki campuran yang encer, bermutu tinggi (= 40 MPa) dan memiliki persentase kekuatan lentur yang lebih baik. PFSCC  didapatkan dari hasil pencampuran antara semen sebanyak 85%, fly ash 15%, superplastizicer 1,5%, serat ijuk 0%, 0,5%; 1%; 1,5%; 2% dan 3% dari berat binder (semen + fly ash), kadar air 190 kg/m3, agregat kasar 552,47 kg/m3 dan pasir 1.063 kg/m3. Semakin banyak persentase penambahan serat ijuk ke dalam campuran berdampak terhadap menurunnya workability beton segar. Penambahan serat ijuk yang paling baik adalah sebanyak 1%, penambahan tersebut dapat meningkatkan kekuatan tekan beton sebesar 13% dan lentur sebesar 1,8%.Kata kunci: beton memadat sendiri (SCC), beton berserat, beton memadat sendiri yang menggunakan serat ijuk (PFSCC), serat ijuk ABSTRACTThe study of characteristics self compacting concrete using palm fibers is a study conducted to determine the effect of adding palm fibers to characteristics of self compacting concrete (SCC). palm fibers self compacting concrete (PFSCC) is designed to have a dilute mixture, high strength (= 40 MPa), and have better precentage flexural strength. PFSCC was obtained from mixing of 85% cement, 15% fly ash, 1.5% superplastizicer, 0%, 0.5%, 1%, 1.5%, 2% and 3% palm fibers from the weight of binder  (cement + fly ash), water content 190 kg/m3, coarse aggregate 552.47 kg/m3 and sand 1,063 kg/m3. The more persentage palm fibers content added to the mixture makes workability of fresh concrete decreases. The best addition of palm fiber is 1%, this addition can increases the compressive strength 13% and flexural strength 1.8%.Keywords: self compacting concrete (SCC), fiber concrete, Palm fiber self compacting concrete (PFSCC), palm fiber


This paper aimed to investigate the mechanical characteristics of HSC of M60 concrete adding 25% of fly ash to cement and sand and percentage variations of silica fumes 0%,5% and 10% to cement with varying sizes of 10mm,6mm,2mm and powder of granite aggregate with w/c of 0.32. Specimens are tested for compressive strength using 10cm X 10cmX10cm cubes for 7,14,28 days flexural strength was determined by using 10cmX10cmX50cm beam specimens at 28 days and 15cm diameter and 30cm height cylinder specimens at 28 days using super plasticizers of conplast 430 as a water reducing agent. In this paper the experimental set up is made to study the mechanical properties of HSC with and without coarse aggregate with varying sizes as 10mm, 6mm, 2mm and powder. Similarly, the effect of silica fume on HSC by varying its percentages as 0%, 5% and 10% in the mix studied. For all mixes 25% extra fly ash has been added for cement and sand.


2014 ◽  
Vol 926-930 ◽  
pp. 645-648 ◽  
Author(s):  
Xu Rong Li ◽  
Hong Guang Ji ◽  
Jun Wang ◽  
Cheng Lin Song

In order to study the strength change of high strength concrete shaft lining structure in underground complex environment resisting composite salt damage erosion, C70 high strength concrete test specimens were made and composite salt disaster solutions of different concentrations were compounded. The test results show that the coefficient of compressive strength and flexural strength of high strength concrete increase in early corrosion and then decline. The strength of specimen declines more quickly in higher corrosion solution concentration in latter time. The change law of the flexural strength is more complex than the compressive strength. Composite salt disaster solutions have little effect for no damage high strength concrete.


2010 ◽  
Vol 658 ◽  
pp. 416-419 ◽  
Author(s):  
Hyun Hwi Lee ◽  
Seung Ho Kim ◽  
Bhupendra Joshi ◽  
Sung Hun Cho ◽  
Soo Wohn Lee

The ceramic channel is very important in SRL hot dipping system. High strength and fracture toughness of ceramic channel materials can improve the quality, productivity and economic feasibility of zinc plated steel. The purpose of this research was to find out the most suitable conditions of the ceramic channel that have best fracture strength and fracture toughness. The hot pressed composite materials was carried out by hot pressing Al2O3 with different content of ZrO2. The composite contained from 0-20 wt.% ZrO2. Hot pressed composite materials were observed for mechanical properties (density, hardness, fracture toughness and flexural strength) and microstructure.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xiaosheng Liu ◽  
Weijun Wang ◽  
Quan Liu ◽  
Chao Yuan

The backfill of metal mines is easily damaged by the disturbance due to their low strength. We proposed a method that uses flexible meshes as the backfill skeleton to enhance the strength of the backfill. The physical and mechanical properties of the flexible mesh-reinforced filling body are investigated by combining theoretical analysis and laboratory experiments. The strengthening effect is remarkable with the flexible meshes. With the friction-passive resistance between the high-strength reinforcement material and the filling body, the insufficient tensile strength of the filling body is compensated and the reinforcement is improved. The ultimate compressive strength is increased by 1.07 to 1.35 times, and the elastic modulus is increased by 1.08 to 4.42 times. We concluded that the essence of strengthening the flexible mesh-reinforced filling is to increase the cohesive force of the filling and increase the ability to resist external load damage.


2020 ◽  
Vol 787 (12) ◽  
pp. 66-71
Author(s):  
H.N. Mammadov ◽  
◽  
I.H. Suleymanova ◽  
B.M. Tahirov ◽  
◽  
...  

The properties of high-strength artificial porous aggregate from glass-containing waste of metallurgical productions are described. The developed technology makes it possible to expand the raw material base for the production of aggregates for light concrete. Granulated slags of metallurgical productions – the main (M0>1) slags of the Novokuznetsk Iron and Steel Plant and acid (M0<1) slags of the Gorky plant are studied. According to the results of studies, it was found that the optimal swelling interval for acidic slags is 1000–1100оC, and for basic slags-1100–1150оC. A high – strength artificial porous aggregate-slag gravel with a bulk density of 340–780 kg/m3 and a compressive strength in the cylinder of 2.8–12.3 MPa was obtained. The main physical and mechanical properties of the resulting aggregate, which meets the requirements of the current standard GOST 9757–90 “Gravel, crushed stone and sand. Artificial porous”, were studied. The aggregate obtained is almost twice as strong as the known aggregate of expanded clay gravel. With the use of porous gravel and sand, light concrete of strength class B7,5–B40 and a density of 1100–1600 kg/m3 was obtained.


Sign in / Sign up

Export Citation Format

Share Document