PolyCodes: generating cancelable biometric features using polynomial transformation

2020 ◽  
Vol 79 (29-30) ◽  
pp. 20729-20752 ◽  
Author(s):  
Harkeerat Kaur ◽  
Pritee Khanna
2016 ◽  
Vol 41 (12) ◽  
pp. 1580-1583 ◽  
Author(s):  
Hye Jin Chung ◽  
Chan Kee Park

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jing Chen ◽  
Ruifeng Ding

This paper presents two methods for dual-rate sampled-data nonlinear output-error systems. One method is the missing output estimation based stochastic gradient identification algorithm and the other method is the auxiliary model based stochastic gradient identification algorithm. Different from the polynomial transformation based identification methods, the two methods in this paper can estimate the unknown parameters directly. A numerical example is provided to confirm the effectiveness of the proposed methods.


2019 ◽  
Vol 31 (1) ◽  
pp. 85-103
Author(s):  
Piotr Wężyk ◽  
Paweł Hawryło ◽  
Marta Szostak ◽  
Karolina Zięba-Kulawik ◽  
Monika Winczek ◽  
...  

Abstract The aim of the research carried out in 2018 and financed by the Forest Fund was the analysis of biometric features and parameters of pine stands in the area of the “Bory Tucholskie” National Park (PNBT), where a program of active protection of lichen was initiated in 2017. Environmental analyses were conducted in relation to selected biometric features of trees and stands using laser scanning (LiDAR), including ULS (Unmanned Laser Scanning; RIEGL VUX-1) and TLS (Terrestrial Laser Scanning; FARO FOCUS 3D; X130). Thanks to the application of LiDAR technology, the structure of pine stands was precisely determined by means of a series of descriptive statistics characterizing the 3D spatial structure of vegetation. Using the Trees Crown Model (CHM), the analysis of the volume of tree crowns and the volume of space under canopy was performed. For the analysed sub-compartments, GIS solar analyses were carried out for the solar energy reaching the canopy and the ground level due to active protection of lichen. Multispectral photos were obtained using a specialized RedEdge-M camera (MicaSense) mounted on the UAV multi rotor platform Typhoon H520 (Yuneec). Flights with a thermal camera were also performed in order to detect places on the ground with high temperature. Plant indices: NDVI, NDRE, GNDVI and GRVI were also calculated for sub-compartments. The data obtained in 2017 and 2018 were the basis for spatial and temporal analyses of 4-D changes in stands which were related to the removal of some trees and organic layer (litter, moss layer).


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaoling Zhu ◽  
Chenglong Cao

E-learning has been carried out all over the world and then online examinations have become an important means to check learning effect during the outbreak of COVID-19. Participant authenticity, data integrity, and access control are the assurance to online examination. The existing online examination schemes cannot provide the protection of biometric features and fine-grained access control. Particularly, they did not discuss how to resolve some disputes among students, teachers, and a platform in a fair and reasonable way. We propose a novel biometric authentication and blockchain-based online examination scheme. The examination data are encrypted to store in a distributed system, which can be obtained only if the user satisfies decryption policy. And the pieces of evidence are recorded in a blockchain network which is jointly established by some credible institutions. Unlike other examination authentication systems, face templates in our scheme are protected using a fuzzy vault and a cryptographic method. Furthermore, educational administrative department can determine who the real initiator of malicious behavior is when a dispute arises using a dispute determination protocol. Analysis shows that no central authority is required in our scheme; the collusion of multiple users cannot obtain more data; even if the authorities compromise, biometric features of each user will not be leaked. Therefore, in terms of privacy-preserving biometric templates, fine-grained access, and dispute resolution, it is superior to the existing schemes.


Author(s):  
S. Kala ◽  
A. Kumar ◽  
A. K. Joshi ◽  
V. M. Bothale ◽  
B. G. Krishna

<p><strong>Abstract.</strong> Satellite imageries in True color composite or Natural Color composite (NCC) serves the best combination for visual interpretation. Red, Green and Infrared channels form false color composite which might not be as useful as NCC to a non-remote sensing professional. As blue band is affected by large atmospheric scattering, satellites like IRS-LISS IV, SPOT do not have blue band. To generate NCC from such satellite data blue band must be simulated. Existing algorithms of spectral transformation do not provide robust coefficients leading to wrong NCC colors especially in water bodies. To achieve more robust coefficients, we have proposed new algorithm to generate NCC for IRS-LISS IV data using second order polynomial regression technique. Second order polynomial transformation functions consider even minor variability present in the image as compared to 1st order so that the derived coefficients are adjustable to accommodate spatial and temporal variability while generating NCC. In this study, Sentinel-2 image was used for deriving coefficients with blue band as dependent and green, red and infrared as independent variables. Simulated Sentinel band showed high accuracy with correlation of 0.93 and 0.97 for two test sites. Using the same coefficients, blue band was simulated for LISS-IV which also showed good correlation of 0.90 with sentinel original blue band. On comparing LISS-IV simulated NCC with simulated NCC from other algorithms, it was observed that higher order polynomial transformation was able to achieve higher accuracy especially for water bodies where expected color is green. Thus, proposed algorithms can be used for transforming false color image to natural color images.</p>


Sign in / Sign up

Export Citation Format

Share Document