Machine recognition efficiency study of safety signs based on image degradation simulation

Author(s):  
Di Mu ◽  
Chaolong Yue
Nanoscale ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 1893-1903
Author(s):  
Wei Li Ang ◽  
Jiri Sturala ◽  
Nikolas Antonatos ◽  
Zdeněk Sofer ◽  
Alessandra Bonanni

The surface ligands on chemically modified germanenes have strong influence on the intrinsic fluorescence, on the bio-conjugation ability and the bio-recognition efficiency of the material towards the detection of a specific analyte.


2020 ◽  
pp. 1-12
Author(s):  
Linuo Wang

The current technology related to athlete gait recognition has shortcomings such as complicated equipment and high cost, and there are also certain problems in recognition accuracy and recognition efficiency. In order to improve the efficiency of athletes’ gait recognition, this paper studies the different recognition technologies of athletes based on machine learning and spectral feature technology and applies computer vision technology to sports. Moreover, according to the calf angular velocity signal, the occurrence of leg movement is detected in real time, and the gait cycle is accurately divided to reduce the influence of the signal unrelated to the behavior on the recognition process. In addition, this study proposes a gait behavior recognition method based on event-driven strategies. This method uses a gyroscope as the main sensor and uses a wearable sensor node to collect the angular velocity signals of the legs and waist. In addition, this study analyzes the performance of the algorithm proposed by this paper through experimental research. The comparison results show that the method proposed by this paper has improved the number of recognition action types and accuracy and has certain advantages from the perspective of computation and scalability.


2011 ◽  
Vol 460-461 ◽  
pp. 617-620
Author(s):  
Xiu Chen Wang

Aiming at time-consuming and ineffective problem of image window division in fabric defect detection, this paper proposes a new adaptive division method after a large number of experiments. This method can quickly and exactly recognize defect feature. Firstly, a division model on adaptive window is established, secondly, the formula to anticipate generally situation of fabric image is given according to the peaks and valleys change in the model, and methods to calculate the division size and position of adaptive window are given. Finally, we conclude that the algorithm in this paper can quickly and simply select the size and position of window division according to actual situation of different fabric images, and the time of image analysis is shortened and the recognition efficiency is improved.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhehuang Huang ◽  
Yidong Chen

Exon recognition is a fundamental task in bioinformatics to identify the exons of DNA sequence. Currently, exon recognition algorithms based on digital signal processing techniques have been widely used. Unfortunately, these methods require many calculations, resulting in low recognition efficiency. In order to overcome this limitation, a two-stage exon recognition model is proposed and implemented in this paper. There are three main works. Firstly, we use synergetic neural network to rapidly determine initial exon intervals. Secondly, adaptive sliding window is used to accurately discriminate the final exon intervals. Finally, parameter optimization based on artificial fish swarm algorithm is used to determine different species thresholds and corresponding adjustment parameters of adaptive windows. Experimental results show that the proposed model has better performance for exon recognition and provides a practical solution and a promising future for other recognition tasks.


Sign in / Sign up

Export Citation Format

Share Document