transcranial imaging
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Congping Chen ◽  
Zhongya Qin ◽  
Sicong He ◽  
Shaojun Liu ◽  
Shun-Fat Lau ◽  
...  

2020 ◽  
Author(s):  
Congping Chen ◽  
Zhongya Qin ◽  
Sicong He ◽  
Shaojun Liu ◽  
Shun-Fat Lau ◽  
...  

AbstractImaging of the brain in its native state at high resolution poses major challenges to visualization techniques. Two-photon microscopy integrated with the thinned-skull or optical clearing skull technique provides a minimally invasive tool for in vivo imaging of the cortex of mice without activating immune response and inducing brain injury. However, the imaging contrast and resolution are severely compromised by the optical heterogeneity of the skull, limiting the imaging depth to the superficial layer. Here, we develop adaptive optics two-photon microscopy for high-resolution transcranial imaging of layer 5 pyramidal neurons up to 700 μm below pia in living mice. In particular, an optimized configuration of imaging system and new wavefront sensing algorithm are proposed for accurate correction for the aberrations induced by the skull window and brain tissue. We investigated microglia-plaque interaction in living brain of Alzheimer’s disease and demonstrated high-precision laser dendrotomy and single-spine ablation.


2020 ◽  
Vol 45 (13) ◽  
pp. 3470
Author(s):  
Zhenyue Chen ◽  
Quanyu Zhou ◽  
Justine Robin ◽  
Daniel Razansky

Author(s):  
Stamatis A. Amanatiadis ◽  
Georgios K. Apostolidis ◽  
Chrysanthi S. Bekiari ◽  
Nikolaos V. Kantartzis

Purpose The reliable transcranial imaging of brain inner structures for diagnostic purposes is deemed crucial owing to the decisive importance and contribution of the brain in human life. The purpose of this paper is to investigate the potential application of medical ultrasounds to transcranial imaging using advanced techniques, such as the total focussing method. Design/methodology/approach Initially, the fundamental details of the total focussing method are presented, while the skull properties, such as the increased acoustic velocity and scattering, are thoroughly examined. Although, these skull characteristics constitute the main drawback of typical transcranial ultrasonic propagation algorithms, they are exploited to focus the acoustic waves towards the brain. To this goal, a virtual source is designed, considering the wave refraction, to efficiently correct the reconstructed brain image. Finally, the verification of the novel method is conducted through numerical simulations of various realistic setups. Findings The theoretically designed virtual source resembles a focussed sensor; therefore, the directivity increment, owing to the propagation through the skull, is confirmed. Moreover, numerical simulations of real-world scenarios indicate that the typical artifacts of the conventional total focussing method are fully overcome because of the increased directivity of the proposed technique, while the reconstructed image is efficiently corrected when the proposed virtual source is used. Originality/value A new systematic methodology along with the design of a flexible virtual source is developed in this paper for the reliable and precise transcranial ultrasonic image reconstruction of the brain. Despite the slight degradation owing to the skull scattering, the combined application of the total focussing method and the featured virtual source can successfully detect arbitrary anomalies in the brain that cannot be spotted by conventional techniques.


Author(s):  
Georgiy Yudintsev ◽  
Christopher M. Lee ◽  
Alexander R. Asilador ◽  
Daniel A. Llano

2018 ◽  
Author(s):  
Héctor Estrada ◽  
Johannes Rebling ◽  
Wolfgang Sievert ◽  
Daniela Hladik ◽  
Urs Hofmann ◽  
...  

AbstractAngiogenesis is critical in bone development and growth. Dense, large-scale, and multi-layered vascular networks formed by thin-walled sinusoidal vessels perfuse the plate bones and play an important role in bone repair. Yet, the intricate functional morphology of skull microvasculature remains poorly understood as it is difficult to visualize using existing intravital microscopy techniques. Here we introduced an intravital fully-transcranial imaging approach based on hybrid optoacoustic and ultrasound bio-microscopy, allowing for large-scale observations and quantitative analysis of the vascular morphology, angiogenesis, vessel remodeling, and subsurface roughness in murine skulls. Our approach also enabled high-throughput physiological studies to understand radiation-inhibited angiogenesis in the skull bone. We observed previously undocumented sinusoidal vascular networks spanning the entire skullcap, thus opening new vistas for studying the complex interactions between calvarian, pial, and cortical vascular systems.


Sign in / Sign up

Export Citation Format

Share Document