2D MRI image analysis and brain tumor detection using deep learning CNN model LeU-Net

Author(s):  
Hari Mohan Rai ◽  
Kalyan Chatterjee
Author(s):  
Tariq Sadad ◽  
Amjad Rehman ◽  
Asim Munir ◽  
Tanzila Saba ◽  
Usman Tariq ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.


Brain tumor detection from MRI images is a challenging process due to high diversity in the tumor pixels of different peoples. Automatic detection has got wide spread acclaim because the manual detection by experts is time consuming and prone to error in judgment. Due to its high mortality rate, detection of tumor automatically is a new emerging technique in bio medical imaging. Here we present a review of few methods from simple thresholding to advanced deep learning methods for segmentation of tumor from MRI data. The segmentation of tumor methods is classified to image segmentation using gray level processing, machine learning and deep learning. The results of various methods are compared to find the best methods available. As medical imaging methods have improving day by day this review will help to understand emerging trends in brain tumor detection.


2021 ◽  
Vol 23 (09) ◽  
pp. 981-993
Author(s):  
T. Balamurugan ◽  
◽  
E. Gnanamanoharan ◽  

Brain tumor segmentation is a challenging task in the medical diagnosis. The primary aim of brain tumor segmentation is to produce precise characterizations of brain tumor areas using adequately placed masks. Deep learning techniques have shown great promise in recent years for solving various computer vision problems such as object detection, image classification, and semantic segmentation. Numerous deep learning-based approaches have been implemented to achieve excellent system performance in brain tumor segmentation. This article aims to comprehensively study the recently developed brain tumor segmentation technology based on deep learning in light of the most advanced technology and its performance. A genetic algorithm based on fuzzy C-means (FCM-GA) was used in this study to segment tumor regions from brain images. The input image is scaled to 256×256 during the preprocessing stage. FCM-GA segmented a preprocessed MRI image. This is a versatile advanced machine learning (ML) technique for locating objects in large datasets. The segmented image is then subjected to hybrid feature extraction (HFE) to improve the feature subset. To obtain the best feature value, Kernel Nearest Neighbor with a genetic algorithm (KNN-GA) is used in the feature selection process. The best feature value is fed into the RESNET classifier, which divides the MRI image into meningioma, glioma, and pituitary gland regions. Real-time data sets are used to validate the performance of the proposed hybrid method. The proposed method improves average classification accuracy by 7.99 % to existing Convolutional Neural Networks (CNN) and Support Vector Machines (SVM) classification algorithms


2021 ◽  
pp. 290-297
Author(s):  
Sanjay Kumar ◽  
J.N. Singh ◽  
Naresh Kumar

Sign in / Sign up

Export Citation Format

Share Document