Degradation of nitrobenzene-containing wastewater by carbon nanotubes immobilized nanoscale zerovalent iron

2016 ◽  
Vol 18 (7) ◽  
Author(s):  
Weizhou Jiao ◽  
Zhirong Feng ◽  
Youzhi Liu ◽  
Huihui Jiang
2018 ◽  
Vol 5 (6) ◽  
pp. 172242 ◽  
Author(s):  
Xinyu Wang ◽  
Wei Wang ◽  
Greg Lowry ◽  
Xiaoyan Li ◽  
Yajie Guo ◽  
...  

A method developed based on the capillary effect and capillary condensation theory was used to synthesize an innovative Fe/C/Pd composite in this study. This composite (Fe@CNTs@Pd) consists of carbon nanotubes (CNTs) with nanoscale zerovalent iron (NZVI) on the inner surface and palladium nanoparticles supported on the outer surface of CNTs. This structure successfully addresses the problems of high iron corrosion rate and lower utilization rate of hydrogen in the application of bimetal nanoparticles for trichloroethylene (TCE) removal. TCE degradation experiments and electrochemical tests were conducted to investigate the material properties and reaction mechanisms of the composite. It is found that the prepared composite material contribute a high level of TCE dechlorination rate and substantially reduced hydrogen production during iron corrosion in water compared with the conventional CNTs-supported bimetal materials (Fe/Pd@CNTs). Hydrogen spillover effect helps the reactivity of Fe@CNTs@Pd for TCE degradation and suppressed the galvanic cell effect, which results in a stronger resistance to corrosion. Although the K obs of Fe@CNTs@Pd was 16.87% lower than that of Fe/Pd@CNTs, the hydrogen production rate of Fe@CNTs@Pd was 10 times slower than that of Fe/Pd@CNTs. Therefore, Fe@CNTs@Pd shows a significant reduction in the corrosion rate at a cost of slightly slower degradation of TCE. In sum, the prepared composites demonstrate important characteristics, including alleviating NZVI agglomeration, maintaining high TCE removal efficiency and reducing the corrosion of NZVI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jien Ye ◽  
Yi Wang ◽  
Qiao Xu ◽  
Hanxin Wu ◽  
Jianhao Tong ◽  
...  

AbstractPassivation of nanoscale zerovalent iron hinders its efficiency in water treatment, and loading another catalytic metal has been found to improve the efficiency significantly. In this study, Cu/Fe bimetallic nanoparticles were prepared by liquid-phase chemical reduction for removal of hexavalent chromium (Cr(VI)) from wastewater. Synthesized bimetallic nanoparticles were characterized by transmission electron microscopy, Brunauer–Emmet–Teller isotherm, and X-ray diffraction. The results showed that Cu loading can significantly enhance the removal efficiency of Cr(VI) by 29.3% to 84.0%, and the optimal Cu loading rate was 3% (wt%). The removal efficiency decreased with increasing initial pH and Cr(VI) concentration. The removal of Cr(VI) was better fitted by pseudo-second-order model than pseudo-first-order model. Thermodynamic analysis revealed that the Cr(VI) removal was spontaneous and endothermic, and the increase of reaction temperature facilitated the process. X-ray photoelectron spectroscopy (XPS) analysis indicated that Cr(VI) was completely reduced to Cr(III) and precipitated on the particle surface as hydroxylated Cr(OH)3 and CrxFe1−x(OH)3 coprecipitation. Our work could be beneficial for the application of iron-based nanomaterials in remediation of wastewater.


2014 ◽  
Vol 280 ◽  
pp. 504-513 ◽  
Author(s):  
Yiming Su ◽  
Adeyemi S. Adeleye ◽  
Xuefei Zhou ◽  
Chaomeng Dai ◽  
Weixian Zhang ◽  
...  

2010 ◽  
Vol 12 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Mallikarjuna N. Nadagouda ◽  
Alicia B. Castle ◽  
Richard C. Murdock ◽  
Saber M. Hussain ◽  
Rajender S. Varma

RSC Advances ◽  
2016 ◽  
Vol 6 (98) ◽  
pp. 95865-95878 ◽  
Author(s):  
Shruti Mishra ◽  
Jaya Dwivedi ◽  
Amar Kumar ◽  
Nalini Sankararamakrishnan

Zerovalent iron decorated CNTs exhibited excellent adsorption capacity towards both Sb(iii) and Sb(v). Using XPS, FTIR and Raman mechanism of interaction is postulated.


InCIEC 2015 ◽  
2016 ◽  
pp. 63-71 ◽  
Author(s):  
Raja Hafizzuddin Raja Amir Iskandar ◽  
Jalina Kassim ◽  
Mohd Fozi Ali ◽  
Amnorzahira Amir

Sign in / Sign up

Export Citation Format

Share Document