scholarly journals Evaluation of Interactions Between Oilfield Chemicals and Reservoir Rocks

2019 ◽  
Vol 29 (2) ◽  
pp. 1239-1258 ◽  
Author(s):  
E. O. Wuyep ◽  
G. F. Oluyemi ◽  
K. Yates ◽  
A. R. Akisanya
2018 ◽  
Vol 165 ◽  
pp. 347-357 ◽  
Author(s):  
E.O. Wuyep ◽  
G.F. Oluyemi ◽  
K. Yates ◽  
A.R. Akisanya

Author(s):  
Elizabeth Olive Wuyep ◽  
◽  
Gbenga Oluyemi ◽  
Kyari Yates ◽  
Alfred R. Akisanya

Author(s):  
S.R. Bembel ◽  
◽  
V.M. Aleksandrov ◽  
A.A. Ponomarev ◽  
P.V. Markov ◽  
...  

1988 ◽  
Vol 43 (4) ◽  
pp. 533-543 ◽  
Author(s):  
G. Chauveteau ◽  
J. Lecourtier ◽  
L. T. Lee

2017 ◽  
Vol 54 (4) ◽  
pp. 227-264
Author(s):  
Ronald Johnson ◽  
Justin Birdwell ◽  
Paul Lillis

To better understand oil and bitumen generation and migration in the Paleogene lacustrine source rocks of the Uinta Basin, Utah, analyses of 182 oil samples and tar-impregnated intervals from 82 core holes were incorporated into a well-established stratigraphic framework for the basin. The oil samples are from the U.S. Geological Survey Energy Resources Program Geochemistry Laboratory Database; the tar-impregnated intervals are from core holes drilled at the Sunnyside and P.R. Spring-Hill Creek tar sands deposits. The stratigraphic framework includes transgressive and regressive phases of the early freshwater to near freshwater lacustrine interval of Lake Uinta and the rich and lean zone architecture developed for the later brackish-to-hypersaline stages of the lake. Two types of lacustrine-sourced oil are currently recognized in the Uinta Basin: (1) Green River A oils, with high wax and low β-carotane contents thought to be generated by source rocks in the fresh-to-brackish water lacustrine interval, and (2) much less common Green River B oils, an immature asphaltic oil with high β-carotane content thought to be generated by marginally mature to mature source rocks in the hypersaline lacustrine interval. Almost all oil samples from reservoir rocks in the fresh-to-brackish water interval are Green River A oils; however four samples of Green River A oils were present in the hypersaline interval, which likely indicates vertical migration. In addition, two samples of Green River B oil are from intervals that were assumed to contain only Green River A oil. Tar sand at the P.R. Spring-Hill Creek deposit are restricted to marginal lacustrine and fluvial sandstones deposited during the hypersaline phase of Lake Uinta, suggesting a genetic relationship to Green River B oils. Tar sand at the Sunnyside deposit, in contrast, occur in marginal lacustrine and alluvial sandstones deposited from the early fresh to nearly freshwater phase of Lake Uinta through the hypersaline phase. The Sunnyside deposit occurs in an area with structural dips that range from 7 to 14 degrees, and it is possible that some tar migrated stratigraphically down section.


2015 ◽  
pp. 26-30
Author(s):  
A. V. Podnebesnykh ◽  
S. V. Kuznetsov ◽  
V. P. Ovchinnikov

On the example of the group of fields in the West Siberia North the basic types of secondary changes in reservoir rocks are reviewed. Some of the most common types of such changes in the West Siberian plate territory include the processes of zeolitization, carbonation and leaching. These processes have, as a rule, a regional character of distribution and are confined to the tectonically active zones of the earth's crust. Due to formation of different mineral paragenesises the secondary processes differently affect the reservoir rocks porosity and permeability: thus, zeolitization and carbonization promote to reducing the porosity and permeability and leaching improvement. All this, ultimately leads to a change of the oil recovery factor and hydrocarbons production levels. Study and taking into account of the reservoir rocks secondary change processes can considerably influence on placement of operating well stock and on planning of geological and technological actions.


Author(s):  
Lars Stemmerik ◽  
Gregers Dam ◽  
Nanna Noe-Nygaard ◽  
Stefan Piasecki ◽  
Finn Surlyk

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stemmerik, L., Dam, G., Noe-Nygaard, N., Piasecki, S., & Surlyk, F. (1998). Sequence stratigraphy of source and reservoir rocks in the Upper Permian and Jurassic of Jameson Land, East Greenland. Geology of Greenland Survey Bulletin, 180, 43-54. https://doi.org/10.34194/ggub.v180.5085 _______________ Approximately half of the hydrocarbons discovered in the North Atlantic petroleum provinces are found in sandstones of latest Triassic – Jurassic age with the Middle Jurassic Brent Group, and its correlatives, being the economically most important reservoir unit accounting for approximately 25% of the reserves. Hydrocarbons in these reservoirs are generated mainly from the Upper Jurassic Kimmeridge Clay and its correlatives with additional contributions from Middle Jurassic coal, Lower Jurassic marine shales and Devonian lacustrine shales. Equivalents to these deeply buried rocks crop out in the well-exposed sedimentary basins of East Greenland where more detailed studies are possible and these basins are frequently used for analogue studies (Fig. 1). Investigations in East Greenland have documented four major organic-rich shale units which are potential source rocks for hydrocarbons. They include marine shales of the Upper Permian Ravnefjeld Formation (Fig. 2), the Middle Jurassic Sortehat Formation and the Upper Jurassic Hareelv Formation (Fig. 4) and lacustrine shales of the uppermost Triassic – lowermost Jurassic Kap Stewart Group (Fig. 3; Surlyk et al. 1986b; Dam & Christiansen 1990; Christiansen et al. 1992, 1993; Dam et al. 1995; Krabbe 1996). Potential reservoir units include Upper Permian shallow marine platform and build-up carbonates of the Wegener Halvø Formation, lacustrine sandstones of the Rhaetian–Sinemurian Kap Stewart Group and marine sandstones of the Pliensbachian–Aalenian Neill Klinter Group, the Upper Bajocian – Callovian Pelion Formation and Upper Oxfordian – Kimmeridgian Hareelv Formation (Figs 2–4; Christiansen et al. 1992). The Jurassic sandstones of Jameson Land are well known as excellent analogues for hydrocarbon reservoirs in the northern North Sea and offshore mid-Norway. The best documented examples are the turbidite sands of the Hareelv Formation as an analogue for the Magnus oil field and the many Paleogene oil and gas fields, the shallow marine Pelion Formation as an analogue for the Brent Group in the Viking Graben and correlative Garn Group of the Norwegian Shelf, the Neill Klinter Group as an analogue for the Tilje, Ror, Ile and Not Formations and the Kap Stewart Group for the Åre Formation (Surlyk 1987, 1991; Dam & Surlyk 1995; Dam et al. 1995; Surlyk & Noe-Nygaard 1995; Engkilde & Surlyk in press). The presence of pre-Late Jurassic source rocks in Jameson Land suggests the presence of correlative source rocks offshore mid-Norway where the Upper Jurassic source rocks are not sufficiently deeply buried to generate hydrocarbons. The Upper Permian Ravnefjeld Formation in particular provides a useful source rock analogue both there and in more distant areas such as the Barents Sea. The present paper is a summary of a research project supported by the Danish Ministry of Environment and Energy (Piasecki et al. 1994). The aim of the project is to improve our understanding of the distribution of source and reservoir rocks by the application of sequence stratigraphy to the basin analysis. We have focused on the Upper Permian and uppermost Triassic– Jurassic successions where the presence of source and reservoir rocks are well documented from previous studies. Field work during the summer of 1993 included biostratigraphic, sedimentological and sequence stratigraphic studies of selected time slices and was supplemented by drilling of 11 shallow cores (Piasecki et al. 1994). The results so far arising from this work are collected in Piasecki et al. (1997), and the present summary highlights the petroleum-related implications.


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


Sign in / Sign up

Export Citation Format

Share Document