Mitogenic signalling in the absence of epidermal growth factor receptor activation in a human glioblastoma cell line

2013 ◽  
Vol 115 (3) ◽  
pp. 323-331 ◽  
Author(s):  
Meng Wang ◽  
Patrick Maier ◽  
Frederik Wenz ◽  
Frank Anton Giordano ◽  
Carsten Herskind
Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1559
Author(s):  
Amena Ali ◽  
Abuzer Ali ◽  
Abu Tahir ◽  
Md. Afroz Bakht ◽  
Salahuddin ◽  
...  

Cancer is the world’s second leading cause of death, accounting for nearly 10 million deaths and 19.3 million new cases in 2020. Curcumin analogs are gaining popularity as anticancer agents currently. We reported herein the isolation, molecular engineering, molecular docking, antiproliferative, and anti-epidermal growth factor receptor (anti-EGFR) activities of curcumin analogs. Three curcumin analogs were prepared and docked against the epidermal growth factor receptor (EGFR), revealing efficient binding. Antiproliferative activity against 60 NCI cancer cell lines was assessed using National Cancer Institute (NCI US) protocols. The compound 3b,c demonstrated promising antiproliferative activity in single dose (at 10 µM) as well as five dose (0.01, 0.10, 1.00, 10, and 100 µM). Compound 3c inhibited leukemia cancer panel better than other cancer panels with growth inhibition of 50% (GI50) values ranging from 1.48 to 2.73 µM, and the most promising inhibition with GI50 of 1.25 µM was observed against leukemia cell line SR, while the least inhibition was found against non-small lung cancer cell line NCI-H226 with GI50 value of 7.29 µM. Compounds 3b,c demonstrated superior antiproliferative activity than curcumin and gefitinib. In molecular docking, compound 3c had the most significant interaction with four H-bonds and three π–π stacking, and compound 3c was found to moderately inhibit EGFR. The curcumin analogs discovered in this study have the potential to accelerate the anticancer drug discovery program.


2002 ◽  
Vol 283 (3) ◽  
pp. L531-L540 ◽  
Author(s):  
Kazuhiro Kohri ◽  
Iris F. Ueki ◽  
Jay A. Nadel

Neutrophil products are implicated in hypersecretory airway diseases. To determine the mechanisms linking a proteolytic effect of human neutrophil elastase (HNE) and mucin overproduction, we examined the effects of HNE on MUC5AC mucin production in human airway epithelial (NCI-H292) cells. Stimulation with HNE for 5–30 min induced MUC5AC production 24 h later, which was prevented by HNE serine active site inhibitors, implicating a proteolytic effect of HNE. MUC5AC induction was preceded by epidermal growth factor receptor (EGFR) tyrosine phosphorylation and was prevented by selective EGFR tyrosine kinase inhibitors, implicating EGFR activation. HNE-induced MUC5AC production was inhibited by a neutralizing transforming growth factor-α (TGF-α, an EGFR ligand) antibody and by a neutralizing EGFR antibody but not by oxygen free radical scavengers, further implicating TGF-α and ligand-dependent EGFR activation in the response. HNE decreased pro-TGF-α in NCI-H292 cells and increased TGF-α in cell culture supernatant. From these results, we conclude that HNE-induced MUC5AC mucin production occurs via its proteolytic activation of an EGFR signaling cascade involving TGF-α.


Sign in / Sign up

Export Citation Format

Share Document