Knockdown of RMST Impedes Neuronal Apoptosis and Oxidative Stress in OGD/R-Induced Ischemic Stroke Via Depending on the miR-377/SEMA3A Signal Network

Author(s):  
Lei Zhao ◽  
Meng Zhang ◽  
Fang Yan ◽  
Yuxia Cong
2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Yingqiong Xu ◽  
Yan Wang ◽  
Guangyun Wang ◽  
Xinyi Ye ◽  
Jiangwei Zhang ◽  
...  

YiQiFuMai (YQFM) powder injection has been reported to be used in cardiovascular and nervous system diseases with marked efficacy. However, as a treatment against diseases characterized by hypoxia, lassitude, and asthenia, the effects and underlying mechanisms of YQFM in neuronal mitochondrial function and dynamics have not been fully elucidated. Here, we demonstrated that YQFM inhibited mitochondrial apoptosis and activation of dynamin-related protein 1 (Drp1) in cerebral ischemia-injured rats, producing a significant improvement in cerebral infarction and neurological score. YQFM also attenuated oxidative stress-induced mitochondrial dysfunction and apoptosis through increasing ATP level and mitochondria membrane potential (Δψm), inhibiting ROS production, and regulating Bcl-2 family protein levels in primary cultured neurons. Moreover, YQFM inhibited excessive mitochondrial fission, Drp1 phosphorylation, and translocation from cytoplasm to mitochondria induced by oxidative stress. We provided the first evidence that YQFM inhibited the activation, association, and translocation of PKCδ and Drp1 upon oxidative stress. Taken together, we demonstrate that YQFM ameliorates ischemic stroke-induced neuronal apoptosis through inhibiting mitochondrial dysfunction and PKCδ/Drp1-mediated excessive mitochondrial fission. These findings not only put new insights into the unique neuroprotective properties of YQFM associated with the regulation of mitochondrial function but also expand our understanding of the underlying mechanisms of ischemic stroke.


Stroke ◽  
2001 ◽  
Vol 32 (1) ◽  
pp. 275-278 ◽  
Author(s):  
Maria Cristina Polidori ◽  
Antonio Cherubini ◽  
Umberto Senin ◽  
Patrizia Mecocci

2013 ◽  
Vol 32 (4) ◽  
pp. 730-740 ◽  
Author(s):  
Cuneyt Unsal ◽  
Mustafa Oran ◽  
Yakup Albayrak ◽  
Cevat Aktas ◽  
Mustafa Erboga ◽  
...  

2019 ◽  
Author(s):  
Mingchao Zhang ◽  
Yujia Li ◽  
Jiucun Wang ◽  
Huiru Tang ◽  
Zhong Yang ◽  
...  

AbstractIt is critical to discover biomarkers for non-invasive evaluation of the levels of inflammation and oxidative stress in human body - two key pathological factors in numerous diseases. Our study has indicated keratin 1-based epidermal autofluorescence (AF) as a biomarker of this type: Inducers of both inflammation and oxidative stress dose-dependently increased epidermal green AF with polyhedral structure in mice, with the AF intensity being highly associated with the dosages of the inducers. Lung cancer also induced increased epidermal green AF of mice, which was mediated by inflammation. Significant and asymmetrical increases in green AF intensity with polyhedral structure were found in the Dorsal Index Fingers’ skin of acute ischemic stroke (AIS) patients. While the AF intensity of the subjects with high risk for developing AIS, ischemic stroke patients in recovery phase and lung cancer patients was significantly higher than that of healthy controls, both AF intensity and AF asymmetry of these four groups were markedly lower than those of the AIS patients, which have shown promise for AIS diagnosis. Several lines of evidence have indicated K1 as an origin of the AF, e.g., K1 siRNA administration attenuated the oxidative stress-induced AF increase of mice. Collectively, our study has indicated K1-based epidermal AF as a biomarker for non-invasive evaluation of the levels of inflammation and oxidative stress in the body. These findings have established a basis for novel keratin’s AF-based biomedical imaging technology for non-invasive, efficient and economic diagnosis and screening of such inflammation- and oxidative stress-associated diseases as AIS.


2021 ◽  
Vol 13 ◽  
Author(s):  
Jia Sun ◽  
Jinzhong Cai ◽  
Junhui Chen ◽  
Siqiaozhi Li ◽  
Xin Liao ◽  
...  

As a severe neurological deficit, intracerebral hemorrhage (ICH) is associated with overwhelming mortality. Subsequent oxidative stress and neurological dysfunction are likely to cause secondary brain injury. Therefore, this study sought to define the role of Krüppel-like factor 6 (KLF6) and underlying mechanism in oxidative stress and neurological dysfunction following ICH. An in vivo model of ICH was established in rats by injection of autologous blood, and an in vitro ICH cell model was developed in hippocampal neurons by oxyhemoglobin (OxyHb) exposure. Next, gain- and loss-of-function assays were performed in vivo and in vitro to clarify the effect of KLF6 on neurological dysfunction and oxidative stress in ICH rats and neuronal apoptosis and mitochondrial reactive oxygen species in OxyHb-induced hippocampal neurons. KLF6, nuclear factor erythroid 2–related factor 2 (Nrf2), and heme oxygenase 1 (HO-1) were highly expressed in hippocampal tissues of ICH rats, whereas sirtuin 5 (SIRT5) presented a poor expression. Mechanistically, KLF6 bound to the SIRT5 promoter and transcriptionally repressed SIRT5 to activate the Nrf2/HO-1 signaling pathway. KLF6 silencing alleviated neurological dysfunction and oxidative stress in ICH rats and diminished oxidative stress and neuronal apoptosis in OxyHb-induced neurons, whereas SIRT5 overexpression negated its effect. To sum up, KLF6 silencing elevated SIRT5 expression to inactivate the Nrf2/HO-1 signaling pathway, thus attenuating oxidative stress and neurological dysfunction after ICH.


Sign in / Sign up

Export Citation Format

Share Document