Spatio-temporal dynamics in the flood exposure due to land use changes in the Alpine Lech Valley in Tyrol (Austria)

2012 ◽  
Vol 68 (3) ◽  
pp. 1243-1270 ◽  
Author(s):  
Holger Cammerer ◽  
Annegret H. Thieken ◽  
Peter H. Verburg
Author(s):  
Maria da Conceição de Sousa ◽  
Gustavo Vieira Veloso ◽  
Lucas Carvalho Gomes ◽  
Elpidio Inácio Fernandes-Filho ◽  
Teógenes Senna de Oliveira

Author(s):  
Michael L. Deadman ◽  
Abdullah M. Al-Sadi ◽  
Malik M. Al-Wardi ◽  
Khalifa S.M. Al-Kiyumi ◽  
W.M. Deadman ◽  
...  

Further from the northern coast of Oman new farm developments were more frequent than closer to the coast; they were also larger. The density of farms was highest close to Muscat although the distance enclosing 50% of farms had shifted away from Muscat during the study period. The dominance of Muscat is likely to be related to access to markets and infrastructure development. The increase in groundwater salinity was also highest close to Muscat and may be responsible for the shift in greenhouse density. Salinization of groundwater is severe close to the coast and was responsible for the reduced density of greenhouses near the coast. Land abandonment was highest close to Muscat and to the coast, reflecting changes in groundwater salinity and urbanization pressure. Less evidence was available for a direct shift from farmland to urban land use. Recent urban developments were largely located in areas already abandoned by agriculture. The paper also discusses likely future trends in land use change given that Oman’s population is increasing at over 2% annually and demand for urban land is increasing. The identification of a “salinity corridor” within which much of the future land use change may occur is discussed. 


2021 ◽  
Vol 101 (1) ◽  
pp. 31-47
Author(s):  
Marko Langovic ◽  
Slavoljub Dragicevic ◽  
Ivan Novkovic ◽  
Nenad Zivkovic ◽  
Radislav Tosic ◽  
...  

Riverbank erosion and lateral channel migration are important geomorphological processes which cause various landscape, socio-economic, and environmental consequences. Although those processes are present on the territory of Serbia, there is no available data about the soil loss caused by riverbank erosion for the entire country. In this study, the spatial and temporal dynamics of the riverbank erosion for the largest internal rivers in Serbia (Velika Morava, Zapadna Morava, Juzna Morava, Pek, Mlava, Veliki Timok, Kolubara) was assessed using remote sensing and GIS. The aim of this paper is to determine the total and average soil loss over large-scale periods (1923-2020), comparing data from the available sources (aerial photographs, satellite images, and different scale paper maps). Results indicated that lateral migration caused significant problems through land loss (approximately 2,561 ha), especially arable land, and land use changes in river basins, but also economic loss due to the reduction of agricultural production. Total and average soil loss was calculated for five most representative meanders on all studied rivers, and on the basis of the obtained values, certain regularities about further development and dynamics of riverbank movement are presented. A better understanding of river channel migration in this area will be of a great importance for practical issues such as predicting channel migration rates for river engineering and planning purposes, soil and water management and land use changes, environment protection.


2021 ◽  
Author(s):  
Alberto Alfonso-Torreño ◽  
Álvaro Gómez-Gutiérrez ◽  
Susanne Schnabel

<p>Soil erosion by water is a frequent soil degradation process in rangelands of SW Spain. The two main erosive processes in these areas are sheetwash erosion in hillslopes and gully erosion due to concentrated flow in valley bottoms. Land use changes and overgrazing play a key role in the genesis and development of gullies and gully erosion is a frequent process with negative consequences at the valley bottoms of these landscapes.</p><p>The development of new techniques allows monitoring of gully dynamics with an increase at spatial and temporal resolutions. Here we present a detailed study of a valley-bottom gully in a Mediterranean rangeland with a savannah-like vegetation cover that was partially restored in February 2017. Restoration activities included check dams (gabion weirs and fascines) and livestock exclosure by fencing. The objectives of this study were: (1) to analyze the effectiveness of the restoration measures, (2) to study erosion and deposition dynamics before and after the restoration activities, (3) to examine the role of micro-morphology on the observed topographic changes and (4) to compare the current and recent channel dynamics with previous studies conducted in the same study area through different methods and spatio-temporal scales, quantifying medium-term changes. Topographic changes were estimated using multi-temporal high-resolution DEMs produced using Structure-from-Motion (SfM) photogrammetry and aerial images acquired by a fixed-wing Unmanned Aerial Vehicle (UAV). DEMs and orthophotographs with a Ground Sampling Distance of 0.02 m were produced by means of SfM photogrammetric techniques. The average Root Mean Square Error (RMSE) estimated during the SfM processing was 0.03 m.</p><p>The performance of the restoration activities was satisfactory to control gully erosion. Check dams were effective favoring sediment deposition and reducing lateral bank erosion. Nevertheless, erosion was observed immediately downstream in 9% of the check dams. Livestock exclosure in the most degraded area promoted the stabilization of bank headcuts and revegetation. The sediments retained behind check dams reduced the longitudinal slope gradient of the channel bed and established a positive feedback mechanism for channel revegetation.</p><p><strong>Keywords</strong>: gully erosion, restoration, topographic change, UAV+SfM, rangeland.</p>


Author(s):  
P. K. Joshi ◽  
Neena Priyanka

The dynamics of land use/land cover (LU/LC) is a manifestation of the cyclic correlation among the kind and magnitude of causes, impacts, responses and resulting ecological processes of the ecosystem. Thus, the holistic understanding of the complex mechanisms that control LU/LC requires synergetic adoption of measurement approaches, addressing issues, and identifying drivers of change and state of art technologies for mitigation measures. As the spatio-temporal heterogeneity of the LU/LC increases, its impact on biodiversity becomes even more difficult to anticipate. Thus, in order to understand the spatio-temporal dynamics of change in landscape and its relationship to biodiversity, it is necessary to reliably identify and quantify the indicators of change. In addition, it is also important to have better understanding of the technologies and techniques that serve as complimentary tool for land mitigation and conservation planning. Against this background, the chapter aims to synthesize LU/LC studies worldwide and their impacts on biodiversity. This chapter explores identification and analysis of key natural, socio-economic and regulatory drivers for LU/LC. Finally, it attempts to collate some LU/LC studies involving usage of geospatial tools, such as satellite remote sensing, Geographic Information System (GIS), Global Positioning System (GPS), and integrative tools, besides conventional approaches that could assist decision makers, land managers, stakeholders and researchers in better management and formulation of conservation strategies based on scientific grounds.


2019 ◽  
Vol 136 ◽  
pp. 05003
Author(s):  
Yanfang Qin ◽  
Lin Ye ◽  
Siming Chen

Based on the Landsat remote sensing data, this paper had monitored the coastline changes of Xiamen city in recent 20 years. By extracting the coastline vector data of 1999, 2005, 2011 and 2017 respectively, the spatio-temporal characteristics of coastline changes on coastline length, change rate and land change area were analyzed, and the main driving factors were analyzed combined with the land use changes in the coastal swing area. The results show that: the total length of Xiamen's coastline increased from 235.16 km to 264.98 km during 1999-2017, and the land area increased from 1558.84 km2 to 1594.29 km2. The most significant changes occurred in Xiang'an district and Huli district with the coastline length increased by 16.38% during 2011-2017 and 22.14% during 1999-2005 respectively, while the changes were not very conspicuous in other areas. According to the land use changes in the coastal areas, the coastline changes in Xiamen City were mainly related to the expansion of construction land and port constructions in Haicang district, Xiang'an district and Huli district, as well as the expansion of aquaculture in the Xiang'an district.


2014 ◽  
Vol 687-691 ◽  
pp. 3078-3082
Author(s):  
Ning Pan ◽  
Ke Wang ◽  
Jing Jing Tan

Frequent land-use changes might produce a large amount of historical data which are valuable for data mining and decision-making. Based on the traditional Whole-state-recording Mode, the Special-state-recording Mode was proposed, focusing on the temporal aspect. This mode could optimize the land use database and reduce redundant change record. It could also improve data rollback and historical backtracking functions. The mode was successfully applied to land use planning in Zhejiang Province.


Sign in / Sign up

Export Citation Format

Share Document