Use of quantitative landslide hazard and risk information for local disaster risk reduction along a transportation corridor: a case study from Nilgiri district, India

2012 ◽  
Vol 65 (1) ◽  
pp. 887-913 ◽  
Author(s):  
Pankaj Jaiswal ◽  
Cees J. Westen
2020 ◽  
Vol 15 (6) ◽  
pp. 675-675
Author(s):  
Haruo Hayashi ◽  
Ryohei Misumi

We are very pleased to publish the Special Issue on NIED Frontier Research on Science and Technology for Disaster Risk Reduction and Resilience 2020. There are nine papers in this issue. The first two papers concern hazard and risk information systems: Sano et al. constructed a real-time risk information map for flood and landslide disasters, and Hirashima et al. created an alert system for snow removal from rooftops. These systems are already in use on the NIED website. The next three papers are case studies of recent storm disasters in Japan and the United States: Cui et al. analyzed the time variation in the distribution of damage reports in the headquarters for heavy-rainfall disaster control in Fukuoka, Shakti et al. studied flood disasters caused by Typhoon Hagibis (2019), and Iizuka and Sakai conducted a meteorological analysis of Hurricane Harvey (2017). Regarding volcanic disasters, Tanada and Nakamura reported the results of an electromagnetic survey of Mt. Nasudake. This special issue also includes three papers on large-scale model experimentation: Danjo and Ishizawa studied the rainfall infiltration process using NIED’s Large-Scale Rainfall Simulator, Kawamata and Nakazawa conducted experiments concerning liquefaction, and Nakazawa et al. reported the results of experiments on seismic retrofits for road embankments. The experiments used E-Defense, the world’s largest three-dimensional shaking table. We hope this issue will provide useful information for all readers studying natural disasters.


2018 ◽  
Vol 13 (7) ◽  
pp. 1298-1308
Author(s):  
Fatma Lestari ◽  
Dicky Pelupessy ◽  
Yasuhito Jibiki ◽  
Fiori Amelia Putri ◽  
Ahmad Yurianto ◽  
...  

Complex disasters may occur as a result of a natural disaster combined with an industrial or a technological disaster. These are also called “natural-hazard triggered technological (natech) disasters.” Currently, there is increasing awareness of the hazards of these natech disasters. Natural disasters could trigger a technological disaster including oil spills and the release of hazardous and flammable materials and toxic chemicals, causing cascading events. The impact of the damage on public health and safety could be catastrophic, as it may result in massive loss of life, environmental destruction, and asset and property loss. Moreover, it could cause business disruptions and affect a country’s reputation. This paper describes a case study on the application of disaster risk reduction and management for natech disasters in Cilegon, Indonesia. We introduce the analysis of risk assessment conducted in Cilegon, the preparedness of the Cilegon City government, a contingency plan that has been developed, and the state of disaster preparedness in industrial zones. Natural and technological disaster risks as well as several emergency preparedness efforts are discussed and multiple stakeholders are identified. The paper serves as a foundation for future research to address natech disasters.


2012 ◽  
Vol 2 ◽  
pp. 84-94 ◽  
Author(s):  
Idelia Ferdinand ◽  
Geoff O’Brien ◽  
Phil O’Keefe ◽  
Janaka Jayawickrama

Author(s):  
Ernest Dube ◽  
Edson Munsaka

This article examined the contribution of indigenous knowledge to disaster risk reduction activities in Zimbabwe. The current discourse underrates the use of indigenous knowledge of communities by practitioners when dealing with disasters’, as the knowledge is often viewed as outdated and primitive. This study, which was conducted in 2016, sought to examine this problem through analysing the potential contribution of indigenous knowledge as a useful disaster risk reduction intervention. Tsholotsho district in Matabeleland, North province of Zimbabwe, which frequently experiences perennial devastating floods, was used as a case study. Interviews and researcher observations were used to gather data from 40 research participants. The findings were that communities understand weather patterns and could predict imminent flooding after studying trees and clouds, and the behaviours of certain animal species. Local communities also use available local resources to put structural measures in place as part of disaster risk reduction interventions. Despite this important potential, the study found that the indigenous knowledge of disaster risk reduction of the communities is often shunned by practitioners. The practitioners claim that indigenous knowledge lacks documentation, it is not found in all generational classes, it is contextualised to particular communities and the knowledge cannot be scientifically validated. The study concluded that both local communities and disaster risk reduction practitioners can benefit from the indigenous knowledge of communities. This research has the potential to benefit communities, policymakers and disaster risk reduction practitioners.


Sign in / Sign up

Export Citation Format

Share Document