A possible relationship between East Indian Ocean SST and tropical cyclone affecting Korea

2014 ◽  
Vol 76 (1) ◽  
pp. 283-301 ◽  
Author(s):  
Ki-Seon Choi ◽  
Sangwook Park ◽  
Ki-Ho Chang ◽  
Jong-Ho Lee
2011 ◽  
Vol 24 (2) ◽  
pp. 509-521 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Xiaotu Lei

Abstract This study attempts to understand contributions of ENSO and the boreal summer sea surface temperature anomaly (SSTA) in the East Indian Ocean (EIO) to the interannual variability of tropical cyclone (TC) frequency over the western North Pacific (WNP) and the involved physical mechanisms. The results show that both ENSO and EIO SSTA have a large control on the WNP TC genesis frequency, but their effects are significantly different. ENSO remarkably affects the east–west shift of the mean genesis location and accordingly contributes to the intense TC activity. The EIO SSTA affects the TC genesis in the entire genesis region over the WNP and largely determines the numbers of both the total and weak TCs. ENSO modulates the large-scale atmospheric circulation and barotropic energy conversion over the WNP, contributing to changes in both the TC genesis location and the frequency of intense TCs. The EIO SSTA significantly affects both the western Pacific summer monsoon and the equatorial Kelvin wave activity over the western Pacific, two major large-scale dynamical controls of TC genesis over the WNP. In general the warm (cold) EIO SSTA suppresses (promotes) the TC genesis over the WNP. Therefore, a better understanding of the combined contributions of ENSO and EIO SSTA could help improve the seasonal prediction of the WNP TC activity.


1969 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
DJ Rochford

Tropical and subtropical water masses at surface and subsurface depths were separated by their salinity, temperature, oxygen, and nutrient characteristics. The annual mean depths and latitudinal extent of these water masses were determined. Annual changes in the upper 50 m were generally so small relative to those found in other oceans that advection and mixing must have been less important in their genesis than local climatic changes. There was a barely significant seasonal rhythm in surface phosphate and nitrate, with peak occurrences of each some 6 months apart. At each latitude the permanent thermal discontinuity centred around a particular isotherm varied little in intensity during the year, but rose and fell in accordance with surface currents. The thermocline south of c. 18�S. varied little in depth but greatly in intensity during the summer. The depth of the mixed layer was much less in summer and at all times shallower in the tropics. The depth of this layer was governed more by the accumulation of surface waters by zonal currents and eddies, than by wind stress or convective overturn. Therefore there was little difference from south to north, or month to month, in average nutrient values of this mixed column. The movement of the various surface waters, deduced from salinity and temperature changes during the year, usually agrees with geostrophic currents across 110�E, and ships' observations of surface currents in the south-east Indian Ocean.


Author(s):  
Xiaoqing Cai ◽  
Xiaoyong Wang ◽  
Jie Meng ◽  
Dayong Bi ◽  
Qingwei Zhou

1979 ◽  
Vol 13 (5) ◽  
pp. 201-206 ◽  
Author(s):  
Takashi Okubo ◽  
Kazunori Furuyama ◽  
Masanobu Sakanoue

2020 ◽  
Vol 389 ◽  
pp. 121846 ◽  
Author(s):  
Xiaohui Wang ◽  
Changjun Li ◽  
Kai Liu ◽  
Lixin Zhu ◽  
Zhangyu Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document