Assessment of reduced-complexity landscape evolution model suitability to adequately simulate flood events in complex flow conditions

2016 ◽  
Vol 86 (1) ◽  
pp. 1-29 ◽  
Author(s):  
Bouchra Zellou ◽  
Hassane Rahali
2019 ◽  
Author(s):  
Erica Emry ◽  
◽  
Kyungdoe Han ◽  
Michael Berry ◽  
Jolante van Wijk ◽  
...  

2021 ◽  
Author(s):  
Florian Caillon ◽  
Katharina Besemer ◽  
Peter Peduzzi ◽  
Jakob Schelker

AbstractFlood events are now recognized as potentially important occasions for the transfer of soil microbes to stream ecosystems. Yet, little is known about these “dynamic pulses of microbial life” for stream bacterial community composition (BCC) and diversity. In this study, we explored the potential alteration of stream BCC by soil inoculation during high flow events in six pre-alpine first order streams and the larger Oberer Seebach. During 1 year, we compared variations of BCC in soil water, stream water and in benthic biofilms at different flow conditions (low to intermediate flows versus high flow). Bacterial diversity was lowest in biofilms, followed by soils and highest in headwater streams and the Oberer Seebach. In headwater streams, bacterial diversity was significantly higher during high flow, as compared to low flow (Shannon diversity: 7.6 versus 7.9 at low versus high flow, respectively, p < 0.001). Approximately 70% of the bacterial operational taxonomic units (OTUs) from streams and stream biofilms were the same as in soil water, while in the latter one third of the OTUs were specific to high flow conditions. These soil high-flow OTUs were also found in streams and biofilms at other times of the year. These results demonstrate the relevance of floods in generating short and reoccurring inoculation events for flowing waters. Moreover, they show that soil microbial inoculation during high flow enhances microbial diversity and shapes fluvial BCC even during low flow. Hence, soil microbial inoculation during floods could act as a previously overlooked driver of microbial diversity in headwater streams.


Author(s):  
J. Town ◽  
A. Akturk ◽  
C. Camcı

Five-hole probes, being a dependable and accurate aerodynamic tools, are excellent choices for measuring complex flow fields. However, total pressure gradients can induce measurement errors. The combined effect of the different flow conditions on the ports causes the measured total pressure to be prone to a greater error. This paper proposes a way to correct the total pressure measurement. The correction is based on the difference between the measured total pressure data of a Kiel probe and a sub-miniature prism-type five-hole probe. By comparing them in a ducted fan related flow field, a line of best fit was constructed. The line of best fit is dependent on the slope of the line in a total pressure versus span and difference in total pressure between the probes at the same location. A computer program, performs the comparison and creates the correction equation. The equation is subsequently applied to the five-hole probe total pressure measurement, and the other dependent values are adjusted. The validity of the correction is then tested by placing the Kiel probe and the five-hole probe in ducted fans with a variety of different tip clearances.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
Junwei Zhou ◽  
Weimin Bao ◽  
Geoffrey R. Tick ◽  
Hamed Moftakhari ◽  
Yu Li ◽  
...  

Abstract It has been observed in literature that for unsteady flow conditions the one-to-one relationships between flow depth, cross-sectional averaged velocity, and frictional resistance as determined from steady uniform flow cases may not be appropriate for these more complex flow systems. Thus, a general friction resistance formula needs to be modified through the addition of new descriptive terms to account for flow unsteadiness, in order to eliminate errors due to uniform and steady-flow assumptions. An extended Chezy formula incorporating both time and space partial derivatives of hydraulic parameters was developed using dimensional analysis to investigate the relationship between flow unsteadiness and friction resistance. Results show that the proposed formula performs better than the traditional Chezy formula for simulating real hydrograph cases whereby both formula coefficients are individually identified for each flood event and coefficients are predetermined using other flood events as calibration cases. Although the extended Chezy formula as well as the original Chezy formula perform worse with the increasing degree of flow unsteadiness, its results are less dramatically affected by unsteadiness intensity, thereby improving estimations of flood routing. As a result, it tends to perform much better than traditional Chezy formula for severe flood events. Under more complex conditions whereby peak flooding events may occur predominantly under unsteady flow, the extended Chezy model may provide as a valuable tool for researchers, practitioners, and water managers for assessing and predicting impacts for flooding and for the development of more appropriate mitigation strategies and more accurate risk assessments.


2020 ◽  
Vol 274 ◽  
pp. 63-78 ◽  
Author(s):  
Rong Li ◽  
Chen Yang ◽  
Dongfang Ke ◽  
Chongxuan Liu

2012 ◽  
Vol 45 ◽  
pp. 293-303 ◽  
Author(s):  
A. Refice ◽  
E. Giachetta ◽  
D. Capolongo

2015 ◽  
Vol 13 (4) ◽  
pp. 533-540 ◽  
Author(s):  
Moftah Alshaikh ◽  
William Dempster

Abstract The air-water two phase critical flows through a safety relief valve commonly used in the refrigeration industry is examined with particular emphasis on the prediction of the critical mass flowrates using CFD based approaches. The expansion of the gas through the valve and the associated acceleration is coupled to the liquid phase and results in changes to the velocity slip with the possibility of influencing the choking conditions and the magnitude of the critical mass flows. These conditions are poorly reported in the literature for safety valves. This paper presents a study where the ability of established two phase multi-dimensional modelling approaches to predict such conditions are investigated. Comparison with the simplified mixture model will show that this model tends to underestimate mass flowrates for medium to high liquid mass fraction. However, the two fluid model can adequately account for the thermal and mechanical non equilibrium for these complex flow conditions with the use of simplified droplet sizing rules.


Sign in / Sign up

Export Citation Format

Share Document