scholarly journals Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model

2020 ◽  
Author(s):  
Tassadit Kourat ◽  
Dalila Smadhi ◽  
Brahim Mouhouche ◽  
Nerdjes Gourari ◽  
M. G. Mostofa Amin ◽  
...  
2014 ◽  
Vol 16 (2) ◽  
pp. 173-185 ◽  
Author(s):  
Ji Min Lee ◽  
Younghun Jung ◽  
Younshik Park ◽  
Hyunwoo Kang ◽  
Kyoung Jae Lim ◽  
...  

2009 ◽  
Vol 42 (1) ◽  
pp. 33-50 ◽  
Author(s):  
So-Ra Ahn ◽  
Min-Ji Park ◽  
Geun-Ae Park ◽  
Seong-Joon Kim

2020 ◽  
Vol 26 (4) ◽  
pp. 517-532
Author(s):  
J. Vanessa Huml ◽  
W. Edwin Harris ◽  
Martin I. Taylor ◽  
Robin Sen ◽  
Christel Prudhomme ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Meisam Nazari ◽  
Behnam Mirgol ◽  
Hamid Salehi

This is the first large-scale study to assess the climate change impact on the grain yield of rainfed wheat for three provinces of contrasting climatic conditions (temperate, cold semi-arid, and hot arid) in Iran. Five integrative climate change scenarios including +0.5°C temperature plus−5% precipitation, +1°C plus−10%, +1.5°C plus−15%, +2°C plus−20%, and +2.5°C plus−25% were used and evaluated. Nitrogen fertilizer and shifting planting dates were tested for their suitability as adaptive strategies for rainfed wheat against the changing climate. The climate change scenarios reduced the grain yield by −6.9 to −44.8% in the temperate province Mazandaran and by −7.3 to −54.4% in the hot arid province Khuzestan but increased it by +16.7% in the cold semi-arid province Eastern Azarbaijan. The additional application of +15, +30, +45, and +60 kg ha−1 nitrogen fertilizer as urea at sowing could not, in most cases, compensate for the grain yield reductions under the climate change scenarios. Instead, late planting dates in November, December, and January enhanced the grain yield by +6 to +70.6% in Mazandaran under all climate change scenarios and by +94 to +271% in Khuzestan under all climate change scenarios except under the scenario +2.5°C temperature plus−25% precipitation which led to a grain yield reduction of −85.5%. It is concluded that rainfed wheat production in regions with cold climates can benefit from the climate change, but it can be impaired in temperate regions and especially in vulnerable hot regions like Khuzestan. Shifting planting date can be regarded as an efficient yield-compensating and environmentally friendly adaptive strategy of rainfed wheat against the climate change in temperate and hot arid regions.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 884
Author(s):  
Stavros Ch. Keppas ◽  
Sofia Papadogiannaki ◽  
Daphne Parliari ◽  
Serafim Kontos ◽  
Anastasia Poupkou ◽  
...  

The Mediterranean is recognized among the most responsive regions to climate change, with annual temperatures projected to increase by 1–5 °C until 2100. Large cities may experience an additional stress discomfort due to the Urban Heat Island (UHI) effect. In the present study, the WRF-ARW numerical weather prediction model was used to investigate the climate change impact on UHI for two Mediterranean cities, Rome and Thessaloniki. For this purpose, three 5-year time-slice simulations were conducted (2006–2010, 2046–2050, 2096–2100) under the Representative Concentration Pathway (RCP) 8.5 emission scenario, with a spatial resolution of 2 km. In order to comprehensively investigate the urban microclimate, we analyze future simulation data across sections crossing urban/non-urban areas, and after grouping them into three classes depending on the location of the grid cells. The urban areas of both cities present increased average minimum temperature (Tmin) in winter/summer compared to other rural areas, with an UHI of ~+1.5–3 °C on average at night/early morning. Considering UHI under future climate change, we found no significant variations (~±0.2 °C). Finally, we found that the numbers of days with Tmin ≥ 20 °C will mostly increase in urban coastal areas until 2100, while the largest increase of minimum Discomfort Index (DImin) is expected in urban low-ground areas.


2020 ◽  
Vol 172 ◽  
pp. 15006 ◽  
Author(s):  
Petros Choidis ◽  
Katerina Tsikaloudaki ◽  
Dimitrios Kraniotis

Several studies underline the dramatic changes that are expected to take place in nature and environment due to climate change. The latter is also expected to affect the built environment. Particular emphasis is currently given to the impact of climate change on historical structures. Within this context, it is important to use simple methods and novel tools in order to investigate specific case studies. In this study, the climate change impact on the hygrothermal performance of the log walls in a historic timber building is presented. The building under investigation is the Fadum storehouse, also known as ‘the coated house’, located in Tønsberg, Norway. The storehouse dates to the late 18th century. It has a particular design with the main features of stumps or piles up to which it stands and the ‘coating’ that covers its outer walls. The main damage of the construction is related to the biological degradation of the wood. The hygrothermal performance of the log walls, as well as the exterior and interior climate, have been monitored and the results have been used to validate a Heat, Air and Moisture transport (HAM) model. The validated HAM model is then used to examine the performance of the log walls for both current and potential future climate conditions. The transient hygrothermal boundary conditions serve as the input parameters to a biohygrothermal model that is used to investigate the biological deterioration of the building components. The findings reveal that currently there is no mould risk for the main body of the construction, which is in accordance with the visual inspection. The passive systems of the building are highly conducive to these results, since they protect it from driving rain and other sources of moisture and eliminate the potential impact of future climate change risk scenarios.


Sign in / Sign up

Export Citation Format

Share Document