Computation of the simplest normal form of a resonant double Hopf bifurcation system with the complex normal form method

2008 ◽  
Vol 57 (1-2) ◽  
pp. 219-229 ◽  
Author(s):  
Wei Wang ◽  
Qi-Chang Zhang
2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation properties.


2000 ◽  
Vol 231 (4) ◽  
pp. 1057-1069 ◽  
Author(s):  
Q.C. ZHANG ◽  
A.Y.T. LEUNG

2022 ◽  
Vol 30 (1) ◽  
pp. 382-403
Author(s):  
Gheorghe Moza ◽  
◽  
Mihaela Sterpu ◽  
Carmen Rocşoreanu ◽  
◽  
...  

<abstract><p>The generic double-Hopf bifurcation is presented in detail in literature in textbooks like references. In this paper we complete the study of the double-Hopf bifurcation with two degenerate (or nongeneric) cases. In each case one of the generic conditions is not satisfied. The normal form and the corresponding bifurcation diagrams in each case are obtained. New possibilities of behavior which do not appear in the generic case were found.</p></abstract>


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.


2014 ◽  
Vol 07 (06) ◽  
pp. 1450070 ◽  
Author(s):  
M. Prakash ◽  
P. Balasubramaniam

In this paper, the dynamics of mathematical model for infection of thymus gland by HIV-1 is analyzed by applying some perturbation through two different types of delays such as in terms of Hopf bifurcation analysis. Further, the conditions for the existence of Hopf bifurcation are derived by evaluating the characteristic equation. The direction of Hopf bifurcation and stability of bifurcating periodic solutions are determined by employing the center manifold theorem and normal form method. Finally, some of the numerical simulations are carried out to validate the derived theoretical results and main conclusions are included.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950182
Author(s):  
Fang Wu ◽  
Xuemei Li

In this paper, we discuss the double Hopf bifurcation and the existence of quasi-periodic invariant tori in a generalized Gopalsamy neural network model. Regarding the connection weight and the delay as bifurcation parameters of the double Hopf bifurcation, we derive the normal form up to the fifth order near the critical point by using the center manifold theorem and the normal form method, and obtain sufficient conditions on the existence of invariant 2-tori for the truncated normal form. Moreover, we investigate the effect of higher-order terms on these 2-tori by a KAM theorem. It is proved that in a sufficiently small neighborhood of the bifurcation point, the neural network model has quasi-periodic invariant 2-tori for most of the parameter set where its truncated normal form possesses invariant 2-tori. We give a numerical example to verify the conditions on all results in remarks.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2444
Author(s):  
Yani Chen ◽  
Youhua Qian

In this paper, the normal form and central manifold theories are used to discuss the influence of two-degree-of-freedom coupled van der Pol oscillators with time delay feedback. Compared with the single-degree-of-freedom time delay van der Pol oscillator, the system studied in this paper has richer dynamical behavior. The results obtained include: the change of time delay causing the stability switching of the system, and the greater the time delay, the more complicated the stability switching. Near the double Hopf bifurcation point, the system is simplified by using the normal form and central manifold theories. The system is divided into six regions with different dynamical properties. With the above results, for practical engineering problems, we can perform time delay feedback adjustment to make the system show amplitude death, limit loop, and so on. It is worth noting that because of the existence of unstable limit cycles in the system, the limit cycle cannot be obtained by numerical solution. Therefore, we derive the approximate analytical solution of the system and simulate the time history of the interaction between two frequencies in Region IV.


2015 ◽  
Vol 25 (04) ◽  
pp. 1550058 ◽  
Author(s):  
Heping Jiang ◽  
Tonghua Zhang ◽  
Yongli Song

In this paper, we investigate the codimension-two double Hopf bifurcation in delay-coupled van der Pol–Duffing oscillators. By using normal form theory of delay differential equations, the normal form associated with the codimension-two double Hopf bifurcation is calculated. Choosing appropriate values of the coupling strength and the delay can result in nonresonance and weak resonance double Hopf bifurcations. The dynamical classification near these bifurcation points can be explicitly determined by the corresponding normal form. Periodic, quasi-periodic solutions and torus are found near the bifurcation point. The numerical simulations are employed to support the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document