New method to examine the stability of equilibrium points for a class of nonlinear dynamical systems

2014 ◽  
Vol 79 (4) ◽  
pp. 2271-2277 ◽  
Author(s):  
A. Ghaffari ◽  
N. Lasemi
Author(s):  
Z. Q. Wu ◽  
P. Yu

In this paper, a new method is proposed for controlling bifurcations of nonlinear dynamical systems. This approach employs the idea used in deriving the transition variety sets of bifurcations with constraints to find the stability region of equilibrium points in parameter space. With this method, one can design, via a feedback control, appropriate parameter values to delay either static, or dynamic or both bifurcations as one wishes. The approach is applied to consider controlling bifurcations of the Ro¨ssler system. The uncontrolled Ro¨ssler has two equilibrium solutions, one of which exhibits static bifurcation while the other has Hopf bifurcation. When a feedback control based on the new method is applied, one can delay the bifurcations and even change the type of bifurcations. An optimal control law is obtained to stabilize the Ro¨ssler system using all feasible system parameter values. Numerical simulations are used to verify the analytical results.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1424 ◽  
Author(s):  
Angelo Alessandri ◽  
Patrizia Bagnerini ◽  
Roberto Cianci

State observers for systems having Lipschitz nonlinearities are considered for what concerns the stability of the estimation error by means of a decomposition of the dynamics of the error into the cascade of two systems. First, conditions are established in order to guarantee the asymptotic stability of the estimation error in a noise-free setting. Second, under the effect of system and measurement disturbances regarded as unknown inputs affecting the dynamics of the error, the proposed observers provide an estimation error that is input-to-state stable with respect to these disturbances. Lyapunov functions and functionals are adopted to prove such results. Third, simulations are shown to confirm the theoretical achievements and the effectiveness of the stability conditions we have established.


2018 ◽  
Vol 28 (12) ◽  
pp. 1830039
Author(s):  
Álvaro G. López ◽  
Álvar Daza ◽  
Jesús M. Seoane ◽  
Miguel A. F. Sanjuán

A systematic procedure to numerically compute a horseshoe map is presented. This new method uses piecewise functions and expresses the required operations by means of elementary transformations, such as translations, scalings, projections and rotations. By repeatedly combining such transformations, arbitrarily complex folding structures can be created. We show the potential of these horseshoe piecewise maps to illustrate several central concepts of nonlinear dynamical systems, as for example, the Wada property.


2017 ◽  
Vol 20 (1) ◽  
pp. 61-70
Author(s):  
P. Sattayatham ◽  
R. Saelim ◽  
S. Sujitjorn

Exponential and asymptotic stability for a class of nonlinear dynamical systems with uncertainties is investigated.  Based on the stability of the nominal system, a class of bounded continuous feedback controllers is constructed.  By such a class of controllers, the results guarantee exponential and asymptotic stability of uncertain nonlinear dynamical system.  A numerical example is also given to demonstrate the use of the main result.


2021 ◽  
Vol 36 (23) ◽  
pp. 2150159
Author(s):  
Jyotirmay Das Mandal ◽  
Mahasweta Biswas ◽  
Ujjal Debnath

This paper reviews a systematic dynamical analysis on a general form of scalar field as Dark Energy (DE) with dark matter (DM) to sort out the “cosmic coincidence” problem. Here the autonomous system of differential equations is two-dimensional (2D) as well as nonlinear. So we have utilized nonlinear dynamical theory to explain various cosmological implications of this model. Nowadays, we have noted that some works are undertaking this nonlinear systems theory. Although we have seen that most of the works are simplifying the underlying nonlinear dynamical systems similar to a linear one, that can lead to flawed conclusions about the evolution of the universe. Since an important theorem, Poincare–Bendixson theorem asserts linearization of the nonlinear system and does not give “global” stability, unlike the linear one if the dimension is more than two. Anyway, our work is different from others in this regard. Here the dimension of the system is two, and we have obtained some interesting stuffs also. We have applied the above theorem of nonlinear dynamical systems and others to find the “global” stability. This theorem offers completely different stable solutions, contrary to the prediction of linear analysis. As a result, we have obtained two fixed points; one of them is a stable “attractor” (it is attracting “node” actually), and thereafter, we have analyzed the stability. To investigate the dynamical system behavior, we have drawn different figures. These figures include vector field and a new plotting strategy (explained later). These investigations suggest a way out of the coincidence problem (or, precisely speaking, what should be the mathematical form of the term “[Formula: see text]”, which indicates interaction between DE and DM to reduce coincidence). In this scenario, if the equation of state (EoS) of DE and DM obeys [Formula: see text], then coincidence problem may be avoided.


Author(s):  
Wassim M. Haddad ◽  
Sergey G. Nersesov

This chapter describes a fundamental stability theory for nonlinear dynamical systems using vector Lyapunov functions. It first introduces the notation and definitions before developing stability theorems via vector Lyapunov functions for continuous-time and discrete-time nonlinear dynamical systems. It then extends the theory of vector Lyapunov functions by constructing a generalized comparison system whose vector field can be a function of the comparison system states as well as the nonlinear dynamical system states. It also presents a generalized convergence result which, in the case of a scalar comparison system, specializes to the classical Krasovskii–LaSalle theorem. In the analysis of large-scale nonlinear interconnected dynamical systems, several Lyapunov functions arise naturally from the stability properties of each individual subsystem.


2012 ◽  
Vol 22 (01) ◽  
pp. 1250020 ◽  
Author(s):  
FABÍOLO M. AMARAL ◽  
LUÍS F. C. ALBERTO

A complete characterization of the stability boundary of a class of nonlinear dynamical systems that admit energy functions is developed in this paper. This characterization generalizes the existing results by allowing the type-zero saddle-node nonhyperbolic equilibrium points on the stability boundary. Conceptual algorithms to obtain optimal estimates of the stability region (basin of attraction) in the form of level sets of a given family of energy functions are derived. The behavior of the stability region and the corresponding estimates are investigated for parameter variation in the neighborhood of a type-zero saddle-node bifurcation value.


Sign in / Sign up

Export Citation Format

Share Document