An efficient cubic spline approximation for variable-order fractional differential equations with time delay

2016 ◽  
Vol 87 (2) ◽  
pp. 815-826 ◽  
Author(s):  
Shole Yaghoobi ◽  
Behrouz Parsa Moghaddam ◽  
Karim Ivaz
Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 872
Author(s):  
Tinggang Zhao ◽  
Yujiang Wu

In this paper, we develop a Hermite cubic spline collocation method (HCSCM) for solving variable-order nonlinear fractional differential equations, which apply C1-continuous nodal basis functions to an approximate problem. We also verify that the order of convergence of the HCSCM is about O(hmin{4−α,p}) while the interpolating function belongs to Cp(p≥1), where h is the mesh size and α the order of the fractional derivative. Many numerical tests are performed to confirm the effectiveness of the HCSCM for fractional differential equations, which include Helmholtz equations and the fractional Burgers equation of constant-order and variable-order with Riemann-Liouville, Caputo and Patie-Simon sense as well as two-sided cases.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Amar Benkerrouche ◽  
Mohammed Said Souid ◽  
Kanokwan Sitthithakerngkiet ◽  
Ali Hakem

AbstractIn this manuscript, we examine both the existence and the stability of solutions to the implicit boundary value problem of Caputo fractional differential equations of variable order. We construct an example to illustrate the validity of the observed results.


Author(s):  
Constantin Bota ◽  
Bogdan Căruntu

AbstractIn this paper a new way to compute analytic approximate polynomial solutions for a class of nonlinear variable order fractional differential equations is proposed, based on the Polynomial Least Squares Method (PLSM). In order to emphasize the accuracy and the efficiency of the method several examples are included.


Author(s):  
A. M. Nagy ◽  
N. H. Sweilam ◽  
Adel A. El-Sayed

The multiterm fractional variable-order differential equation has a massive application in physics and engineering problems. Therefore, a numerical method is presented to solve a class of variable order fractional differential equations (FDEs) based on an operational matrix of shifted Chebyshev polynomials of the fourth kind. Utilizing the constructed operational matrix, the fundamental problem is reduced to an algebraic system of equations which can be solved numerically. The error estimate of the proposed method is studied. Finally, the accuracy, applicability, and validity of the suggested method are illustrated through several examples.


2019 ◽  
Vol 22 (1) ◽  
pp. 27-59 ◽  
Author(s):  
HongGuang Sun ◽  
Ailian Chang ◽  
Yong Zhang ◽  
Wen Chen

Abstract Variable-order (VO) fractional differential equations (FDEs) with a time (t), space (x) or other variables dependent order have been successfully applied to investigate time and/or space dependent dynamics. This study aims to provide a survey of the recent relevant literature and findings in primary definitions, models, numerical methods and their applications. This review first offers an overview over the existing definitions proposed from different physical and application backgrounds, and then reviews several widely used numerical schemes in simulation. Moreover, as a powerful mathematical tool, the VO-FDE models have been remarkably acknowledged as an alternative and precise approach in effectively describing real-world phenomena. Hereby, we also make a brief summary on different physical models and typical applications. This review is expected to help the readers for the selection of appropriate definition, model and numerical method to solve specific physical and engineering problems.


Sign in / Sign up

Export Citation Format

Share Document