Parametric resonance and pattern selection in an array of microcantilevers interacting through fringing electrostatic fields

Author(s):  
Nir Dick ◽  
Slava Krylov
1989 ◽  
Vol 50 (C8) ◽  
pp. C8-135-C8-140
Author(s):  
C. MAINKA ◽  
W. DRACHSEL ◽  
J. H. BLOCK ◽  
G. KOZLOWSKI

Author(s):  
Károly Dénes ◽  
Bulcsú Sándor ◽  
Zoltán Néda

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 923
Author(s):  
Kun Huang ◽  
Ji Yao

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers’ attention. For the first time, the present paper proposes beam theory to model SWCNTs’ mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.


2021 ◽  
Author(s):  
Alexander B. Weberg ◽  
Samuel P. McCollom ◽  
Laura M. Thierer ◽  
Michael R. Gau ◽  
Patrick J. Carroll ◽  
...  

Secondary coordination sphere electrostatic effects tune the valence manifolds of copper centers, impacting molecular geometries, photophysical properties, and redox potentials.


Author(s):  
Jiayi Wang ◽  
Iordanis Chatzinikolaidis ◽  
Carlos Mastalli ◽  
Wouter Wolfslag ◽  
Guiyang Xin ◽  
...  

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Mustafa A. Amin ◽  
Andrew J. Long ◽  
Zong-Gang Mou ◽  
Paul M. Saffin

Abstract We investigate the production of photons from coherently oscillating, spatially localized clumps of axionic fields (oscillons and axion stars) in the presence of external electromagnetic fields. We delineate different qualitative behaviour of the photon luminosity in terms of an effective dimensionless coupling parameter constructed out of the axion-photon coupling, and field amplitude, oscillation frequency and radius of the axion star. For small values of this dimensionless coupling, we provide a general analytic formula for the dipole radiation field and the photon luminosity per solid angle, including a strong dependence on the radius of the configuration. For moderate to large coupling, we report on a non-monotonic behavior of the luminosity with the coupling strength in the presence of external magnetic fields. After an initial rise in luminosity with the coupling strength, we see a suppression (by an order of magnitude or more compared to the dipole radiation approximation) at moderately large coupling. At sufficiently large coupling, we find a transition to a regime of exponential growth of the luminosity due to parametric resonance. We carry out 3+1 dimensional lattice simulations of axion electrodynamics, at small and large coupling, including non-perturbative effects of parametric resonance as well as backreaction effects when necessary. We also discuss medium (plasma) effects that lead to resonant axion to photon conversion, relevance of the coherence of the soliton, and implications of our results in astrophysical and cosmological settings.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ata Keşkekler ◽  
Oriel Shoshani ◽  
Martin Lee ◽  
Herre S. J. van der Zant ◽  
Peter G. Steeneken ◽  
...  

AbstractMechanical sources of nonlinear damping play a central role in modern physics, from solid-state physics to thermodynamics. The microscopic theory of mechanical dissipation suggests that nonlinear damping of a resonant mode can be strongly enhanced when it is coupled to a vibration mode that is close to twice its resonance frequency. To date, no experimental evidence of this enhancement has been realized. In this letter, we experimentally show that nanoresonators driven into parametric-direct internal resonance provide supporting evidence for the microscopic theory of nonlinear dissipation. By regulating the drive level, we tune the parametric resonance of a graphene nanodrum over a range of 40–70 MHz to reach successive two-to-one internal resonances, leading to a nearly two-fold increase of the nonlinear damping. Our study opens up a route towards utilizing modal interactions and parametric resonance to realize resonators with engineered nonlinear dissipation over wide frequency range.


Sign in / Sign up

Export Citation Format

Share Document