Expected improvement based infill sampling for global robust optimization of constrained problems

2017 ◽  
Vol 18 (3) ◽  
pp. 723-753 ◽  
Author(s):  
Samee ur Rehman ◽  
Matthijs Langelaar
Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1631
Author(s):  
Kittisak Chaiyotha ◽  
Tipaluck Krityakierne

Engineering optimization problems often involve computationally expensive black-box simulations of underlying physical phenomena. This paper compares the performance of four constrained optimization algorithms relying on a Gaussian process model and an infill sampling criterion under the framework of Bayesian optimization. The four infill sampling criteria include expected feasible improvement (EFI), constrained expected improvement (CEI), stepwise uncertainty reduction (SUR), and augmented Lagrangian (AL). Numerical tests were rigorously performed on a benchmark set consisting of nine constrained optimization problems with features commonly found in engineering, as well as a constrained structural engineering design optimization problem. Based upon several measures including statistical analysis, our results suggest that, overall, the EFI and CEI algorithms are significantly more efficient and robust than the other two methods, in the sense of providing the most improvement within a very limited number of objective and constraint function evaluations, and also in the number of trials for which a feasible solution could be located.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 774-780
Author(s):  
K.-H. Lee ◽  
G.-J. Park

Author(s):  
Bernhard Poethke ◽  
Stefan Völker ◽  
Konrad Vogeler

Abstract In the surrogate model-based optimization of turbine airfoils, often only the prediction values for objective and constraints are employed, without considering uncertainties in the prediction. This is also the case for multi-fidelity optimization strategies based on e.g. the Gappy-POD approach, in which results from analyses of different fidelities are incorporated. However, the consideration of uncertainties in global optimization has the advantage that a balanced coverage of the design space between unexplored regions and regions close to the current optimum takes place. This means that on the one hand regions are covered in which so far only a few sample points are present and thus a high degree of uncertainty exists (global exploration), and on the other hand regions with promising objective and constraint values are investigated (local exploitation). The genuine new contribution in this work is the quantification of the uncertainty of the multi-fidelity Gappy-POD method and an adapted optimization strategy based on it. The uncertainty quantification is based on the error of linear fitting of low-fidelity values to the POD basis and subsequent forward propagation to the high-fidelity values. The uncertainty quantification is validated for random airfoil designs in a design of experiment. Based on this, a global optimization strategy for constrained problems is presented, which is based on the well-known Efficient Global Optimization (EGO) strategy and the Feasible Expected Improvement criterion. This means that Kriging models are created for both the objective and the constraint values depending on the design variables that consider both the predictions and the uncertainties. This approach offers the advantage that existing and widely used programs or libraries can be used for multi-fidelity optimization that support the (single-fidelity) EGO algorithm. Finally, the method is demonstrated for an industrial test case. A comparison between a single-fidelity optimization and a multi-fidelity optimization is made, each with the EGO strategy. A coupling of 2D/3D simulations is used for multi-fidelity analyses. The proposed method achieves faster feasible members in the optimization, resulting in faster turn-around compared to the single-fidelity strategy.


2021 ◽  
Vol 13 (19) ◽  
pp. 10645
Author(s):  
Xiaodong Song ◽  
Mingyang Li ◽  
Zhitao Li ◽  
Fang Liu

Public traffic has a great influence, especially with the background of COVID-19. Solving simulation-based optimization (SO) problem is efficient to study how to improve the performance of public traffic. Global optimization based on Kriging (KGO) is an efficient method for SO; to this end, this paper proposes a Kriging-based global optimization using multi-point infill sampling criterion. This method uses an infill sampling criterion which obtains multiple new design points to update the Kriging model through solving the constructed multi-objective optimization problem in each iteration. Then, the typical low-dimensional and high-dimensional nonlinear functions, and a SO based on 445 bus line in Beijing city, are employed to test the performance of our algorithm. Moreover, compared with the KGO based on the famous single-point expected improvement (EI) criterion and the particle swarm algorithm (PSO), our method can obtain better solutions in the same amount or less time. Therefore, the proposed algorithm expresses better optimization performance, and may be more suitable for solving the tricky and expensive simulation problems in real-world traffic problems.


AIAA Journal ◽  
2002 ◽  
Vol 40 (4) ◽  
pp. 774-780 ◽  
Author(s):  
Kwon-Hee Lee ◽  
Gyung-Jin Park

Author(s):  
Long Wang ◽  
Theodore T. Allen ◽  
Michael A. Groeber

AbstractMethods based on Gaussian stochastic process (GSP) models and expected improvement (EI) functions have been promising for box-constrained expensive optimization problems. These include robust design problems with environmental variables having set-type constraints. However, the methods that combine GSP and EI sub-optimizations suffer from the following problem, which limits their computational performance. Efficient global optimization (EGO) methods often repeat the same or nearly the same experimental points. We present a novel EGO-type constraint-handling method that maintains a so-called tabu list to avoid past points. Our method includes two types of penalties for the key “infill” optimization, which selects the next test runs. We benchmark our tabu EGO algorithm with five alternative approaches, including DIRECT methods using nine test problems and two engineering examples. The engineering examples are based on additive manufacturing process parameter optimization informed using point-based thermal simulations and robust-type quality constraints. Our test problems span unconstrained, simply constrained, and robust constrained problems. The comparative results imply that tabu EGO offers very promising computational performance for all types of black-box optimization in terms of convergence speed and the quality of the final solution.


2005 ◽  
Vol 107 (1-2) ◽  
pp. 37-61 ◽  
Author(s):  
E. Erdoğan ◽  
G. Iyengar

Author(s):  
Immanuel Bomze ◽  
Markus Gabl

Abstract In this paper we explore convex reformulation strategies for non-convex quadratically constrained optimization problems (QCQPs). First we investigate such reformulations using Pataki’s rank theorem iteratively. We show that the result can be used in conjunction with conic optimization duality in order to obtain a geometric condition for the S-procedure to be exact. Based upon known results on the S-procedure, this approach allows for some insight into the geometry of the joint numerical range of the quadratic forms. Then we investigate a reformulation strategy introduced in recent literature for bilinear optimization problems which is based on adjustable robust optimization theory. We show that, via a similar strategy, one can leverage exact reformulation results of QCQPs in order to derive lower bounds for more complicated quadratic optimization problems. Finally, we investigate the use of reformulation strategies in order to derive characterizations of set-copositive matrix cones. Empirical evidence based upon first numerical experiments shows encouraging results.


Sign in / Sign up

Export Citation Format

Share Document