Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions

2011 ◽  
Vol 31 (6) ◽  
pp. 799-810 ◽  
Author(s):  
Hong-Yu Fan ◽  
Xiao-Song Li ◽  
Chuan Shi ◽  
De-Zhi Zhao ◽  
Jing-Lin Liu ◽  
...  
1998 ◽  
Vol 24 (4-6) ◽  
pp. 163-172 ◽  
Author(s):  
J.F Bengoa ◽  
N.G Gallegos ◽  
S.G Marchetti ◽  
A.M Alvarez ◽  
M.V Cagnoli ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 244
Author(s):  
Yuguo Wang ◽  
Tieyue Qi ◽  
Mengxuan Hu ◽  
Yu Yang ◽  
Lei Xing ◽  
...  

Sulfite and heavy metals are crucial pollutants in the slurry produced by flue gas desulfurization. In this study, a novel cobalt-based activated carbon fiber (Co-ACFs) catalyst-adsorbent was synthesized using an impregnation method; this bifunctional catalyst-adsorbent was used in wet magnesia desulfurization for the simultaneous catalytic oxidation of magnesium sulfite and uptake of heavy metal (Hg2+, Cd2+, and Ni2+) ions. The morphology and surface chemistry of ACFs before and after cobalt loading were investigated using various characterization methods. The kinetics on catalytic oxidation of magnesium sulfite was investigated, and the effects of operation conditions on the simultaneous adsorption capacity of heavy metals were examined. Relative to a non-catalysis material, the 40% Co-ACFs material increased the oxidation rate of magnesium sulfite by more than five times. The Langmuir model can describe the adsorption behavior of Co-ACFs on Hg2+, Cd2+, and Ni2+, indicating that the simultaneous uptake of heavy metals is a single-layer adsorption process. The maximum adsorption capacities for Hg2+, Cd2+, and Ni2+ are 333.3, 500, and 52.6 mg/g, respectively. A pseudo-second-order model confirmed that the removal of heavy metals is controlled by the chemisorption process.


Author(s):  
Julian Wosik ◽  
Bogdan Miedzinski ◽  
Artur Kozlowski ◽  
Marian Kalus

Author(s):  
E. A. Vakulin ◽  
A. I. Zayats ◽  
V. A. Beklemeshev ◽  
V. A. Ivashkevich ◽  
V. A. Khazhiev ◽  
...  

Investigation of failures is one of the critical activities of mining and haulage equipment operability assurance in mining. Maintaining failure investigation at the required quality level, it is possible to identify provisions, rules and procedures that should be revised or changed, operation conditions that should be improved, additional personnel training, if required, etc. Investigation of failures in mines is under responsibility of machine men and electricians of maintenance and operation services. In reality, factory management and setup for production condition weak concernment of these workers in quality investigation aimed at finding of sources of equipment failures. This article describes real-life results achieved in development and use of maintenance service operation, technology and management monitoring. The requirements are substantiated for quality improvement in failure cause finding and removal in mining and haulage equipment at Chernogorsky open pit mine, SUEK-Khakassia. Causes of the present quality of failure investigation by machine men of Chernogorsky Repair and Engineering Works and Chernogorsky open pit mine are revealed. The proposed recommended practices will improve quality of mining and haulage equipment failure investigation.


2020 ◽  
Vol 38 (12A) ◽  
pp. 1783-1789
Author(s):  
Jaafar S. Matooq ◽  
Muna J. Ibraheem

 This paper aims to conduct a series of laboratory experiments in case of steady-state flow for the new size 7 ̋ throat width (not presented before) of the cutthroat flume. For this size, five different lengths were adopted 0.535, 0.46, 0.40, 0.325 and 0.27m these lengths were adopted based on the limitations of the available flume. The experimental program has been followed to investigate the hydraulic characteristic and introducing the calibrated formula for free flow application within the discharge ranged between 0.006 and 0.025 m3/s. The calibration result showed that, under suitable operation conditions, the suggested empirical formulas can accurately predict the values of discharge within an error ± 3%.


Sign in / Sign up

Export Citation Format

Share Document