scholarly journals Preformulation Studies of a Stable PTEN-PDZ Lipopeptide Able to Cross an In Vitro Blood-Brain-Barrier Model as a Potential Therapy for Alzheimer’s Disease

2020 ◽  
Vol 37 (10) ◽  
Author(s):  
Aikaterini Lalatsa ◽  
Yujiao Sun ◽  
Jose Ignacio Gamboa ◽  
Shira Knafo

Abstract Purpose Amyloid β (Aβ) drives the accumulation of excess Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) at synapses, inducing synaptic depression and perturbing memory. This recruitment of PTEN to synapses in response to Aβ drives its interaction with PSD95/Disc large/Zonula occludens-1 (PDZ) proteins and, indeed, we previously showed that an oligo lipopeptide (PTEN-PDZ) capable of blocking such PTEN:PDZ interactions rescues the synaptic and cognitive deficits in a mouse model of Alzheimer’s disease. Hence, the PTEN:PDZ interaction appears to be crucial for Aβ-induced synaptic and cognitive impairment. Here we have evaluated the feasibility of using PTEN-PDZ lipopeptides based on the human/mouse PTEN C-terminal sequence, testing their stability in biological fluids, their cytotoxicity, their ability to self-assemble and their in vitro blood-brain barrier (BBB) permeability. Myristoyl or Lauryl tails were added to the peptides to enhance their cell permeability. Methods Lipopeptides self assembly was assessed using electron microscopy and the thioflavin T assay. Stability studies in mouse plasma (50%), intestinal washing, brain and liver homogenates as well as permeability studies across an all human 2D blood-brain barrier model prepared with human cerebral endothelial cells (hCMEC/D3) and human astrocytes (SC-1800) were undertaken. Results The mouse lauryl peptide displayed enhanced overall stability in plasma, ensuring a longer half-life in circulation that meant there were larger amounts available for transport across the BBB (Papp0-4h: 6.28 ± 1.85 × 10−6 cm s−1). Conclusion This increased availability, coupled to adequate BBB permeability, makes this peptide a good candidate for therapeutic parenteral (intravenous, intramuscular) administration and nose-to-brain delivery. Graphical Abstract

2012 ◽  
Vol 15 (2) ◽  
pp. 324-336 ◽  
Author(s):  
Kwok Kin Cheng ◽  
Chin Fung Yeung ◽  
Shuk Wai Ho ◽  
Shing Fung Chow ◽  
Albert H. L. Chow ◽  
...  

2021 ◽  
Author(s):  
li Jianhua ◽  
Li mengyu ◽  
Ge Yangyang ◽  
Chen Jiayi ◽  
Ma Jiamin ◽  
...  

Abstract Background Blood-brain barrier (BBB) dysfunction may occur in the onset of Alzheimer's disease (AD). While pericytes are a vital part of the neurovascular unit and the BBB, acting as the gatekeeper of the BBB. Amyloid β (Aβ) deposition and neurofibrillary tangles in the brain are the central pathological features of AD. CD36 promotes vascular amyloid deposition and leads to vascular brain damage, neurovascular dysfunction, and cognitive deficits. However, the molecular mechanism in destroying pericytes of the BBB are still unclear. Objectives To investigate the effect of low-dose Aβ1-40 administration on pericyte outcome and BBB injury molecular mechanism. Methods We selected 6-month-old and 9-month-old APP/PS1 mice and wild-type (WT) mice of the same strain, age, and sex as controls. We assessed the BBB by PET/CT. Brain pericytes were extracted and cocultured with endothelial cells (bEnd.3) to generate an in vitro BBB model to observe the effect of Aβ1-40 on the BBB. Furthermore, we explored the intracellular degradation and related molecular mechanisms of Aβ1-40 after being engulfed in cells through CD36. Results BBB permeability and the number of pericytes decreased in APP/PS1 mice. Aβ1-40 increases the permeability of the BBB in an in vivo model and downregulates the expression of CD36, which reversed the Aβ-induced changes in BBB permeability. Aβ1-40 was phagocytized in pericytes with high expression of CD36. We observed that this molecule inhibited pericyte proliferation, caused mitochondrial damage, and increased mitophagy. Finally, we confirmed that Aβ1-40 induced pericyte mitophagy-dependent ferroptosis through the CD36/PINK1/Parkin pathway. Conclusions PDGFRβ (a marker of pericytes), CD36, and amyloid β colocalized in vitro and in vivo and that Aβ1-40 caused BBB destruction by upregulating the expression of CD36 in pericytes. The mechanism by which Aβ1-40 destroys the BBB involves induction of pericyte mitophagy-dependent ferroptosis through the CD36/PINK1/Parkin pathway.


2020 ◽  
Vol 12 (3) ◽  
pp. 035008
Author(s):  
Libiao Liu ◽  
Xinda Li ◽  
Xinzhi Zhang ◽  
Tao Xu

2016 ◽  
Vol 18 (suppl_6) ◽  
pp. vi49-vi50
Author(s):  
Choi-Fong Cho ◽  
Justin Wolfe ◽  
Colin Fazden ◽  
Kalvis Hornburg ◽  
E. Antonio Chiocca ◽  
...  

2017 ◽  
Vol 92 (2) ◽  
pp. 823-832 ◽  
Author(s):  
S. M. Müller ◽  
F. Ebert ◽  
G. Raber ◽  
S. Meyer ◽  
J. Bornhorst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document