Diurnal changes in leaf gas exchange and validation of a mathematical model for coffee (Coffea arabica L.) canopy photosynthesis

2005 ◽  
Vol 43 (4) ◽  
pp. 575-582 ◽  
Author(s):  
L. F. Gomez ◽  
J. C. Lopez ◽  
N. M. Riano ◽  
Y. Lopez ◽  
E. C. Montoya
2019 ◽  
Vol 24 (3) ◽  
pp. 316-327
Author(s):  
Somashekhargouda Patil ◽  
D’Souza G. F ◽  
Deepika Kumar Umesh ◽  
C. Rudragouda

2006 ◽  
Vol 42 (2) ◽  
pp. 147-164 ◽  
Author(s):  
J. C. RONQUIM ◽  
C. H. B. A. PRADO ◽  
P. NOVAES ◽  
J. I. FAHL ◽  
C. C. RONQUIM

Three cultivars of Coffea arabica, Catuaí Vermelho IAC 81, Icatu Amarelo IAC 2944 and Obatã IAC 1669–20, were evaluated in relation to leaf gas exchange and potential photochemical efficiency of photosystem II under field conditions on clear and cloudy days in the wet season in southeast Brazil. Independent of levels of irradiance, leaf water potential (υleaf) values were always higher than the minimum required to affect daily net photosynthesis (PN). PN, stomatal conductance (gs), leaf transpiration (E) and the index of photochemical efficiency (Fv/Fm) declined on a clear day in all cultivars. The depression of leaf gas exchange and Fv/Fm (specially around midday) caused a strong decrease (about 70 %) in daily carbon gain on a clear day. Under cloudless conditions, gs and PN were correlated with the air vapour pressure deficit (VPDair), but not with photosynthetic photon flux density (PPFD) values. On a cloudy day, the daily carbon gain was barely limited by PPFD below 800 μmol m−2 s−1, the Fv/Fm values showed a slight decrease around midday, and gs and PN were positively correlated with PPFD but not with VPDair. By contrast, irrespective of the contrasting irradiance conditions during the day, PN and E were correlated with gs.


2010 ◽  
Vol 46 (3) ◽  
pp. 381-391 ◽  
Author(s):  
PAULA NOVAES ◽  
JOÃO PAULO SOUZA ◽  
CARLOS HENRIQUE BRITTO ASSIS PRADO

SUMMARYHardening of Coffea arabica saplings by watering cycles (WCs) might be a suitable practice to achieve higher tolerance to low leaf water potential (Ψleaf) before transplanting to the field. As a consequence, hardening could promote growth and biomass gain during the initial development of C. arabica in the field. Thus, the less interrupted initial growth in a changing environment should confer higher flowering intensity in hardened than in control plants. The aim of this work was to verify if leaf gas exchange and Ψleaf behaviour of C. arabica saplings grafted on C. canephora showed consistent alterations during hardening by WCs and if this was effective to improve vegetative and reproductive growth under field conditions. For these reasons, saplings of the Mundo Novo cultivar of C. arabica grafted on C. canephora were submitted to seven WCs over 35 days. Each WC was completed when net photosynthesis was close to zero. The pattern of leaf gas exchange, mainly stomatal conductance (gs), was modified permanently after three WCs and the new pattern of leaf gas exchange could result in a more positive water balance and less interrupted development of C. arabica saplings in the field, particularly due to permanent low values of gs. After field transplantation, hardened plants showed greater height and stem diameter, more leaves and branches, and superior biomass production in leaves, stem and roots than control plants in dry and wet periods. The number of flowers was also significantly higher in hardened than in control plants. On the other hand, similar values were found between control and hardened plants in the leaf area ratio and the shoot/root ratio. Therefore, previous hardening by WCs was effective in improving leaf gas exchange, vegetative and reproductive development under field conditions and maintained the original biomass partitioning among the main plant compartments in dry and wet periods.


2007 ◽  
Vol 43 (2) ◽  
pp. 223-239 ◽  
Author(s):  
H. K. L. K. GUNASEKARA ◽  
W. A. J. M. DE COSTA ◽  
E. A. NUGAWELA

The main objective of this study was to quantify the genotypic variation of photosynthetic and gas exchange parameters of Hevea and to examine their relationships to dry rubber yield and its components. Canopy photosynthesis (Pc) of the genotype RRISL 211 was 20 % greater than that of RRIC 121. This was primarily due to RRISL 211's greater light-saturated leaf photosynthetic rates and a greater leaf area index in the top canopy stratum. Tapping significantly increased Pc in RRISL 211, but not in RRIC 121. The genotypic variation in photosynthetic capacity was not reflected in the overall dry rubber yield, which did not differ between the two genotypes. However, analysis of yield components showed that while RRISL 211 may have preferentially partitioned a greater proportion of its additional assimilates to increasing the latex volume and extending the root system, RRIC 121 partitioned more assimilates to increasing its dry rubber content through greater biosynthesis of rubber. The higher plugging index and the greater post-tapping girth increment of RRIC 121 were probably responsible for observed increases in its dark respiration following tapping. Although RRISL 211 had a greater transpiration efficiency, this did not provide a yield advantage as the trees were growing in an environment with adequate rainfall throughout the year.


Author(s):  
A. Delgado-Alvarado

Objetivo: Analizar el proceso de producción y comercialización de café en la comunidad del Cerro Cuate, Iliatenco, en la región de la Montaña de Guerrero, México.Diseño/Metodología/aproximación: el trabajo se realizó por; 1) investigación documental), 2) selección del área de estudio, 3) Entrevista estructurada con preguntas abiertas a 22 cafeticultores, soportada con la técnica de encuesta seccional y la herramienta de cédulas de entrevistas, y 4) análisis de la información. El tamaño de muestra se definió por el método de muestreo por conveniencia, y la selección de las unidades de análisis por la técnica bola de nieve. Resultados: El sistema de producción de café que predominó fue el sistema rústico de montaña, intercalado con plátano y frutales. La máxima productividad de las plantaciones se alcanza de 5.5 a 7.5años de edad, la renovación de plantas la hacen a los 12 años. El rendimiento de café fue de 3.7 kg por planta por año. La producción del café la realizan principalmente hombres (77.3%), entre 56 y 70años de edad. La venta se realiza en la presentación de café capulín a granel a intermediarios, a la ARIC, a CAFECO, a la Unión de Ejidos y a la Organización Mixtrui.Limitaciones del estudio/implicaciones: Se da una propuesta de mejora para favorecer el proceso de producción, beneficio y comercialización del café.Hallazgos/conclusiones: Coffea arabica es el principal café que se cultiva, con las variedades Typica, Caturra, Mundo Novo, Garnica y Bourbón. Los factores que limitan su producción y calidad son faltade planeación en manejo del cultivo y no contar con asesoría técnica.


Sign in / Sign up

Export Citation Format

Share Document