Seasonal water-use efficiency and chlorophyll fluorescence response in alpha grass (Stipa tenacissima L.) is affected by tussock size

2008 ◽  
Vol 46 (2) ◽  
pp. 222-231 ◽  
Author(s):  
D. A. Ramirez ◽  
F. Valladares ◽  
F. Domingo ◽  
J. Bellot
2019 ◽  
Vol 250 ◽  
pp. 230-235 ◽  
Author(s):  
Binghua Liu ◽  
Jing Liang ◽  
Guimin Tang ◽  
Xiaofang Wang ◽  
Fangchun Liu ◽  
...  

2018 ◽  
Vol 10 (5) ◽  
pp. 796 ◽  
Author(s):  
Xiaoliang Lu ◽  
Zhunqiao Liu ◽  
Yuyu Zhou ◽  
Yaling Liu ◽  
Jianwu Tang

2010 ◽  
Vol 61 (1) ◽  
pp. 1 ◽  
Author(s):  
A. Doherty ◽  
V. O. Sadras ◽  
D. Rodriguez ◽  
A. Potgieter

In eastern Australia, latitudinal gradients in vapour pressure deficit (VPD), mean temperature (T), photosynthetically active radiation (PAR), and fraction of diffuse radiation (FDR) around the critical stage for yield formation affect wheat yield and crop water-use efficiency (WUE = yield per unit evapotranspiration). In this paper we combine our current understanding of these climate factors aggregated in a normalised phototermal coefficient, NPq = (PAR· FDR)/(T · VPD), with a shire-level dynamic model of crop yield and water use to quantify WUE of wheat in 245 shires across Australia. Three measures of WUE were compared: WUE, the ratio of measured yield and modelled evapotranspiration; WUEVPD, i.e. WUE corrected by VPD; and WUENPq, i.e. WUE corrected by NPq. Our aim is to test the hypothesis that WUENPq suits regional comparisons better than WUE or WUEVPD. Actual median yield at the shire level (1975–2000) varied from 0.5 to 2.8 t/ha and the coefficient of variation ranged from 18 to 92%. Modelled median evapotranspiration varied from 106 to 620 mm and it accounted for 42% of the variation in yield among regions. The relationship was non-linear, and yield stabilised at ~2 t/ha for evapotranspiration above 343 mm. There were no associations between WUE and rainfall. The associations were weak (R2 = 0.09) but in the expected direction for WUEVPD, i.e. inverse with seasonal rainfall and direct with off-season rainfall, and strongest for WUENPq (R2 = 0.40).We suggest that the effects of VPD, PAR, FDR, and T, can be integrated to improve the regional quantification of WUE defined in terms of grain yield and seasonal water use.


2010 ◽  
Vol 135 (1) ◽  
pp. 25-32 ◽  
Author(s):  
D. Michael Glenn

This study examined the interaction between a reflective particle film and water use efficiency (WUE) response of irrigated and non-irrigated apple trees (Malus ×domestica) over a wide range of environmental conditions. The objectives were to measure isotopic discrimination (Δ13C and δ18O), specific gas exchange, and WUE response of ‘Empire’ apple treated with a reflective particle film (PF), with and without supplemental irrigation, compared with an untreated control, with and without supplemental irrigation, over a range of leaf area indices (LAI), seasonal evapotranspiration (ETo), and vapor pressure deficits (VPD) to determine the mechanisms of action affecting WUE in apple. Short-term whole canopy gas exchange studies and isotope discrimination analysis were used to test the hypothesis that WUE was modified by the use of a PF. In whole canopy gas exchange studies, carbon assimilation (A) and transpiration tended to increase, and WUE and canopy conductance tended to decrease, with VPD within each LAI class from 2 to 6. For VPD > 1 kPa, the PF irrigated treatment consistently had the greatest WUE and other treatments were intermediate for LAI of 2 to 4. The PF irrigated and non-irrigated treatments had greater WUE than the control irrigated and non-irrigated treatments for VPD ≤ 2 kPa and there were no treatment effects for VPD > 2 kPa in the LAI range of 4 to 6. The PF non-irrigated was equivalent to the control non-irrigated treatment at VPD of 1 to 3 kPa, but was significantly lower at VPD of 3 to 4 kPa. PF irrigated and non-irrigated treatments had the greatest carbon isotope discrimination (Δ13C), the control non-irrigated treatment had the lowest Δ13C, and the control-irrigated treatment was intermediate. Oxygen isotope enrichment (δ18O) was positively correlated with the mean growing season VPD and mean growing season evapotranspiration. Δ13C was significantly and positively correlated with δ18O. Seasonal WUE was negatively correlated with Δ13C and there was an interaction with LAI. The seasonal water use of apple is better evaluated with stable isotope discrimination integrating seasonal variation rather that the use of whole canopy gas exchange measurements that measure WUE for brief periods of time. Δ13C was an accurate measurement of apple WUE and indicated that the PF irrigated treatment had the greatest Δ13C and so the lowest WUE compared with the control non-irrigated treatment at LAI from 4 to 6. The reduced WUE of the PF irrigated treatment compared with the control non-irrigated treatment is likely due to increased gS from lower canopy temperature and increased canopy photosynthetically active radiation diffusion that drove increased A. δ18O was an indicator of seasonal water use over six growing seasons due to its high correlation with ETo. In ‘Empire’ apple, A can be increased with PF and irrigation treatments, but at the cost of decreased WUE.


2017 ◽  
Vol 14 (1) ◽  
pp. 142-157 ◽  
Author(s):  
Xiang-yang Sun ◽  
Gen-xu Wang ◽  
Mei Huang ◽  
Zhao-yong Hu ◽  
Chun-lin Song

2019 ◽  
Author(s):  
Weichang Gong ◽  
Yaqing Chen ◽  
Jian Wang ◽  
Han Yuan

Abstract Background Inter-specific hybridizations were common and can easily take place in Buddleja , and it was an important way for evolution and rapid speciation. The F1 hybrid in this study was a newly identified inter-specific hybridization between B. crispa and B. offic inalis in Sino-Himalayan region. In the natural hybrid zones, F1 hybrids always occupy different habitats from their parents. The objective of this study was to explore environmental acclimatization of F1 hybrids and their parents at physiological and biochemical levels.Results The results showed that F1 hybrids performed as an intermediate in adaptation to their parents, with divergent gas-exchange and chlorophyll fluorescence features. F1 hybrids showed the parallel light compensation point and light saturation point with their parents, but low utilization efficiency to low-light density. They synthesized the greatest total chlorophyll content (10.41 ± 0.56 mg•g -1 ) in leaves than their parents. During the diurnal variation of photosynthesis, F1 hybrids markedly decreased and preserved the stomatal conductance and leaf transpiration rate at a low level. However, they kept high carbon assimilation rate and water-use efficiency with markedly increased vapor pressure deficit. In F1 hybrids, the maximum net photosynthetic rate, maximum water-use efficiency and maximum vapor pressure deficit were 10.48 ± 0.50 mmol CO 2 •mmol -1 photo, 21.52 ± 2.20 µmol•mmol -1 and 4.18 ± 0.55 kPa, respectively. In addition, all Buddleja species performed well and grow healthy with high level of the maximum photochemical efficiency of PSII and low non-photochemical quenching, 0.83 ± 0.004 - 0.85 ± 0.004, and 1.22 ± 0.15 - 1.97 ± 0.08, respectively. In F1 hybrids, they showed great photochemical activity compared to their parental species with high photochemical quenching. Furthermore, the effective quantum yield and electron transport rate presented a similar behavior.Conclusions The results indicated that F1 hybrids have great photochemical activities and growth acclimatization compared to their parents. Associated with the growth performance of F1 hybrids in the homogenous garden, our results suggested that the divergent gas-exchange and chlorophyll fluorescence patterns may facilitate F1 hybrids to respond to different habitats, and to improve growth performance.


Sign in / Sign up

Export Citation Format

Share Document