fluorescence response
Recently Published Documents


TOTAL DOCUMENTS

319
(FIVE YEARS 86)

H-INDEX

37
(FIVE YEARS 8)

2021 ◽  
pp. 127132
Author(s):  
Quan-Quan Li ◽  
Ming-Jie Wen ◽  
Yu-Sen Zhang ◽  
Zi-Sheng Guo ◽  
Xue Bai ◽  
...  

2021 ◽  
Author(s):  
Qinghua Cao ◽  
Jinyue Dai ◽  
Xin Bao ◽  
Zhenyu Zhang ◽  
Fei Liu ◽  
...  

Abstract A series of cellulose-based fluorescent materials are prepared under relative mild conditions by use of the DMSO/DBU/CO2 system to utilize as coating pigments. Through the observation under 365nm UV light, the cellulose-based fluorescent materials exhibit good fluorescence response and bright color. Furthermore, due to the limitation of the molecular skeleton of cellulose, the intrinsic aggregation caused quenching phenomenon commonly existed in conventional organic fluorescent pigments can be effectively inhibited, which is very helpful to retain good fluorescence response in epoxy-based coating material and its coating films. Moreover, the addition of cellulose-based fluorescent materials also increases the mechanical properties of the coating film. The increase of tensile strength and tensile modulus respectively reaches ~39% and ~66%. Solvent resistance and thermal property of the coating films generally remain unchanged. The fabrication of cellulose-based fluorescent materials in DMSO/DBU/CO2 system provides a feasible way to develop the functional application of cellulose.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 119
Author(s):  
David Milićević ◽  
Jan Hlaváč

A new concept for simultaneous detection of two model proteases based on immobilized fluorescently labelled peptides was developed and evaluated. Each probe was composed of a carrier modified by poly(ethylene glycol) (PEG) chains, a specifically cleavable linker, and a fluorescent dye incorporated in the peptide tail. Based on a single excitation–double emission fluorescence response of liberated fluorophores caused by enzymatic cleavage, the presence of a single or both proteases in a mixture was unambiguously determined in an experimentally established concentration range. Among the tested solid supports, Rink Amide PEGA resin was recognized as the most suitable choice from the perspective of on-resin enzyme assays.


2021 ◽  
Vol 8 (2) ◽  
pp. 20218209
Author(s):  
I. S. Kovalev ◽  
L. K. Sadieva ◽  
O. S. Taniya ◽  
V. M. Yurk ◽  
A. S. Minin ◽  
...  

Pyrene-based compounds have a great potential as fluorescent chemosensors for various analytes including common nitro-explosives, such as 2,4,6-trinitrotoluene (TNT). Compounds having two pyrene units in one molecule, such as bispyrenylalkanes, are able to form stable, bright emissive in a visual wavelength region excimers both in non-polar and polar environments. In this work we wish to report that in non-polar solvents the excimer has poor chemosensing properties while in aqueous solutions it provides significant “turn-off” fluorescence response to TNT in the sub-nanomolar concentrations.


2021 ◽  
Vol 6 (1) ◽  
pp. 59
Author(s):  
Sung-Hun Yun ◽  
Ji-Sung Park ◽  
Seul-Bit-Na Koo ◽  
Chan-Young Park ◽  
Yu-Seop Kim ◽  
...  

This paper proposes a cost-effective real-time multiplexed polymerase chain reaction (PCR) chip system for point-of-care (POC) testing. In the proposed system, nucleic acid amplification is performed in a reaction chamber built on a printed-circuit-board (PCB) substrate with a PCB pattern heater and a thermistor. Fluorescence can be detected through the transparent plastic on the other side of the substrate. Open platform cameras were used for miniaturization and cost-effectiveness. We also used simple and cost-effective oblique lighting to stimulate fluorescence. Response performance was investigated by observing the change in the average brightness of the chamber images with various reference dye concentrations. In addition, we investigated the interference properties between different colors by measuring the fluorescence response for each dye concentration mixed with the maximum concentration of the different dyes. Quantitative performance was validated using standard DNA solutions. Experimental results show that the proposed system is suitable for POC real-time multi-PCR systems.


2021 ◽  
Author(s):  
Qinghua Cao ◽  
Jinyue Dai ◽  
Xin Bao ◽  
Zhenyu Zhang ◽  
Fei Liu ◽  
...  

Abstract A series of cellulose-based fluorescent materials are prepared under relative mild conditions by use of the reversible DMSO/DBU/CO2 system to utilize as coating pigments. Through the observation under 365nm UV light, the cellulose-based fluorescent materials exhibit good fluorescence response and bright color. Furthermore, due to the limitation of the molecular skeleton of cellulose, the intrinsic aggregation caused quenching phenomenon commonly existed in conventional organic fluorescent pigments can be effectively inhibited, which is very helpful to retain good fluorescence response in epoxy-based coating material and its coating films. Moreover, the addition of cellulose-based fluorescent materials also increases the mechanical properties of the coating film. The increase of tensile strength and tensile modulus respectively reaches ~ 39% and ~ 66%. Solvent resistance and thermal property of the coating films generally remain unchanged. The fabrication of cellulose-based fluorescent materials in DMSO/DBU/CO2 system provides a feasible way to develop the functional application of cellulose.


Sign in / Sign up

Export Citation Format

Share Document